MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmcl Structured version   Visualization version   Unicode version

Theorem lsmcl 19083
Description: The sum of two subspaces is a subspace. (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmcl.s  |-  S  =  ( LSubSp `  W )
lsmcl.p  |-  .(+)  =  (
LSSum `  W )
Assertion
Ref Expression
lsmcl  |-  ( ( W  e.  LMod  /\  T  e.  S  /\  U  e.  S )  ->  ( T  .(+)  U )  e.  S )

Proof of Theorem lsmcl
Dummy variables  a 
d  e  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmodabl 18910 . . . 4  |-  ( W  e.  LMod  ->  W  e. 
Abel )
213ad2ant1 1082 . . 3  |-  ( ( W  e.  LMod  /\  T  e.  S  /\  U  e.  S )  ->  W  e.  Abel )
3 lsmcl.s . . . . 5  |-  S  =  ( LSubSp `  W )
43lsssubg 18957 . . . 4  |-  ( ( W  e.  LMod  /\  T  e.  S )  ->  T  e.  (SubGrp `  W )
)
543adant3 1081 . . 3  |-  ( ( W  e.  LMod  /\  T  e.  S  /\  U  e.  S )  ->  T  e.  (SubGrp `  W )
)
63lsssubg 18957 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  e.  (SubGrp `  W )
)
763adant2 1080 . . 3  |-  ( ( W  e.  LMod  /\  T  e.  S  /\  U  e.  S )  ->  U  e.  (SubGrp `  W )
)
8 lsmcl.p . . . 4  |-  .(+)  =  (
LSSum `  W )
98lsmsubg2 18262 . . 3  |-  ( ( W  e.  Abel  /\  T  e.  (SubGrp `  W )  /\  U  e.  (SubGrp `  W ) )  -> 
( T  .(+)  U )  e.  (SubGrp `  W
) )
102, 5, 7, 9syl3anc 1326 . 2  |-  ( ( W  e.  LMod  /\  T  e.  S  /\  U  e.  S )  ->  ( T  .(+)  U )  e.  (SubGrp `  W )
)
11 eqid 2622 . . . . . . . 8  |-  ( +g  `  W )  =  ( +g  `  W )
1211, 8lsmelval 18064 . . . . . . 7  |-  ( ( T  e.  (SubGrp `  W )  /\  U  e.  (SubGrp `  W )
)  ->  ( u  e.  ( T  .(+)  U )  <->  E. d  e.  T  E. e  e.  U  u  =  ( d
( +g  `  W ) e ) ) )
135, 7, 12syl2anc 693 . . . . . 6  |-  ( ( W  e.  LMod  /\  T  e.  S  /\  U  e.  S )  ->  (
u  e.  ( T 
.(+)  U )  <->  E. d  e.  T  E. e  e.  U  u  =  ( d ( +g  `  W ) e ) ) )
1413adantr 481 . . . . 5  |-  ( ( ( W  e.  LMod  /\  T  e.  S  /\  U  e.  S )  /\  a  e.  ( Base `  (Scalar `  W
) ) )  -> 
( u  e.  ( T  .(+)  U )  <->  E. d  e.  T  E. e  e.  U  u  =  ( d ( +g  `  W ) e ) ) )
15 simpll1 1100 . . . . . . . . 9  |-  ( ( ( ( W  e. 
LMod  /\  T  e.  S  /\  U  e.  S
)  /\  a  e.  ( Base `  (Scalar `  W
) ) )  /\  ( d  e.  T  /\  e  e.  U
) )  ->  W  e.  LMod )
16 simplr 792 . . . . . . . . 9  |-  ( ( ( ( W  e. 
LMod  /\  T  e.  S  /\  U  e.  S
)  /\  a  e.  ( Base `  (Scalar `  W
) ) )  /\  ( d  e.  T  /\  e  e.  U
) )  ->  a  e.  ( Base `  (Scalar `  W ) ) )
17 simpll2 1101 . . . . . . . . . 10  |-  ( ( ( ( W  e. 
LMod  /\  T  e.  S  /\  U  e.  S
)  /\  a  e.  ( Base `  (Scalar `  W
) ) )  /\  ( d  e.  T  /\  e  e.  U
) )  ->  T  e.  S )
18 simprl 794 . . . . . . . . . 10  |-  ( ( ( ( W  e. 
LMod  /\  T  e.  S  /\  U  e.  S
)  /\  a  e.  ( Base `  (Scalar `  W
) ) )  /\  ( d  e.  T  /\  e  e.  U
) )  ->  d  e.  T )
19 eqid 2622 . . . . . . . . . . 11  |-  ( Base `  W )  =  (
Base `  W )
2019, 3lssel 18938 . . . . . . . . . 10  |-  ( ( T  e.  S  /\  d  e.  T )  ->  d  e.  ( Base `  W ) )
2117, 18, 20syl2anc 693 . . . . . . . . 9  |-  ( ( ( ( W  e. 
LMod  /\  T  e.  S  /\  U  e.  S
)  /\  a  e.  ( Base `  (Scalar `  W
) ) )  /\  ( d  e.  T  /\  e  e.  U
) )  ->  d  e.  ( Base `  W
) )
22 simpll3 1102 . . . . . . . . . 10  |-  ( ( ( ( W  e. 
LMod  /\  T  e.  S  /\  U  e.  S
)  /\  a  e.  ( Base `  (Scalar `  W
) ) )  /\  ( d  e.  T  /\  e  e.  U
) )  ->  U  e.  S )
23 simprr 796 . . . . . . . . . 10  |-  ( ( ( ( W  e. 
LMod  /\  T  e.  S  /\  U  e.  S
)  /\  a  e.  ( Base `  (Scalar `  W
) ) )  /\  ( d  e.  T  /\  e  e.  U
) )  ->  e  e.  U )
2419, 3lssel 18938 . . . . . . . . . 10  |-  ( ( U  e.  S  /\  e  e.  U )  ->  e  e.  ( Base `  W ) )
2522, 23, 24syl2anc 693 . . . . . . . . 9  |-  ( ( ( ( W  e. 
LMod  /\  T  e.  S  /\  U  e.  S
)  /\  a  e.  ( Base `  (Scalar `  W
) ) )  /\  ( d  e.  T  /\  e  e.  U
) )  ->  e  e.  ( Base `  W
) )
26 eqid 2622 . . . . . . . . . 10  |-  (Scalar `  W )  =  (Scalar `  W )
27 eqid 2622 . . . . . . . . . 10  |-  ( .s
`  W )  =  ( .s `  W
)
28 eqid 2622 . . . . . . . . . 10  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
2919, 11, 26, 27, 28lmodvsdi 18886 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  (
a  e.  ( Base `  (Scalar `  W )
)  /\  d  e.  ( Base `  W )  /\  e  e.  ( Base `  W ) ) )  ->  ( a
( .s `  W
) ( d ( +g  `  W ) e ) )  =  ( ( a ( .s `  W ) d ) ( +g  `  W ) ( a ( .s `  W
) e ) ) )
3015, 16, 21, 25, 29syl13anc 1328 . . . . . . . 8  |-  ( ( ( ( W  e. 
LMod  /\  T  e.  S  /\  U  e.  S
)  /\  a  e.  ( Base `  (Scalar `  W
) ) )  /\  ( d  e.  T  /\  e  e.  U
) )  ->  (
a ( .s `  W ) ( d ( +g  `  W
) e ) )  =  ( ( a ( .s `  W
) d ) ( +g  `  W ) ( a ( .s
`  W ) e ) ) )
3115, 17, 4syl2anc 693 . . . . . . . . 9  |-  ( ( ( ( W  e. 
LMod  /\  T  e.  S  /\  U  e.  S
)  /\  a  e.  ( Base `  (Scalar `  W
) ) )  /\  ( d  e.  T  /\  e  e.  U
) )  ->  T  e.  (SubGrp `  W )
)
3215, 22, 6syl2anc 693 . . . . . . . . 9  |-  ( ( ( ( W  e. 
LMod  /\  T  e.  S  /\  U  e.  S
)  /\  a  e.  ( Base `  (Scalar `  W
) ) )  /\  ( d  e.  T  /\  e  e.  U
) )  ->  U  e.  (SubGrp `  W )
)
3326, 27, 28, 3lssvscl 18955 . . . . . . . . . 10  |-  ( ( ( W  e.  LMod  /\  T  e.  S )  /\  ( a  e.  ( Base `  (Scalar `  W ) )  /\  d  e.  T )
)  ->  ( a
( .s `  W
) d )  e.  T )
3415, 17, 16, 18, 33syl22anc 1327 . . . . . . . . 9  |-  ( ( ( ( W  e. 
LMod  /\  T  e.  S  /\  U  e.  S
)  /\  a  e.  ( Base `  (Scalar `  W
) ) )  /\  ( d  e.  T  /\  e  e.  U
) )  ->  (
a ( .s `  W ) d )  e.  T )
3526, 27, 28, 3lssvscl 18955 . . . . . . . . . 10  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( a  e.  ( Base `  (Scalar `  W ) )  /\  e  e.  U )
)  ->  ( a
( .s `  W
) e )  e.  U )
3615, 22, 16, 23, 35syl22anc 1327 . . . . . . . . 9  |-  ( ( ( ( W  e. 
LMod  /\  T  e.  S  /\  U  e.  S
)  /\  a  e.  ( Base `  (Scalar `  W
) ) )  /\  ( d  e.  T  /\  e  e.  U
) )  ->  (
a ( .s `  W ) e )  e.  U )
3711, 8lsmelvali 18065 . . . . . . . . 9  |-  ( ( ( T  e.  (SubGrp `  W )  /\  U  e.  (SubGrp `  W )
)  /\  ( (
a ( .s `  W ) d )  e.  T  /\  (
a ( .s `  W ) e )  e.  U ) )  ->  ( ( a ( .s `  W
) d ) ( +g  `  W ) ( a ( .s
`  W ) e ) )  e.  ( T  .(+)  U )
)
3831, 32, 34, 36, 37syl22anc 1327 . . . . . . . 8  |-  ( ( ( ( W  e. 
LMod  /\  T  e.  S  /\  U  e.  S
)  /\  a  e.  ( Base `  (Scalar `  W
) ) )  /\  ( d  e.  T  /\  e  e.  U
) )  ->  (
( a ( .s
`  W ) d ) ( +g  `  W
) ( a ( .s `  W ) e ) )  e.  ( T  .(+)  U ) )
3930, 38eqeltrd 2701 . . . . . . 7  |-  ( ( ( ( W  e. 
LMod  /\  T  e.  S  /\  U  e.  S
)  /\  a  e.  ( Base `  (Scalar `  W
) ) )  /\  ( d  e.  T  /\  e  e.  U
) )  ->  (
a ( .s `  W ) ( d ( +g  `  W
) e ) )  e.  ( T  .(+)  U ) )
40 oveq2 6658 . . . . . . . 8  |-  ( u  =  ( d ( +g  `  W ) e )  ->  (
a ( .s `  W ) u )  =  ( a ( .s `  W ) ( d ( +g  `  W ) e ) ) )
4140eleq1d 2686 . . . . . . 7  |-  ( u  =  ( d ( +g  `  W ) e )  ->  (
( a ( .s
`  W ) u )  e.  ( T 
.(+)  U )  <->  ( a
( .s `  W
) ( d ( +g  `  W ) e ) )  e.  ( T  .(+)  U ) ) )
4239, 41syl5ibrcom 237 . . . . . 6  |-  ( ( ( ( W  e. 
LMod  /\  T  e.  S  /\  U  e.  S
)  /\  a  e.  ( Base `  (Scalar `  W
) ) )  /\  ( d  e.  T  /\  e  e.  U
) )  ->  (
u  =  ( d ( +g  `  W
) e )  -> 
( a ( .s
`  W ) u )  e.  ( T 
.(+)  U ) ) )
4342rexlimdvva 3038 . . . . 5  |-  ( ( ( W  e.  LMod  /\  T  e.  S  /\  U  e.  S )  /\  a  e.  ( Base `  (Scalar `  W
) ) )  -> 
( E. d  e.  T  E. e  e.  U  u  =  ( d ( +g  `  W
) e )  -> 
( a ( .s
`  W ) u )  e.  ( T 
.(+)  U ) ) )
4414, 43sylbid 230 . . . 4  |-  ( ( ( W  e.  LMod  /\  T  e.  S  /\  U  e.  S )  /\  a  e.  ( Base `  (Scalar `  W
) ) )  -> 
( u  e.  ( T  .(+)  U )  ->  ( a ( .s
`  W ) u )  e.  ( T 
.(+)  U ) ) )
4544impr 649 . . 3  |-  ( ( ( W  e.  LMod  /\  T  e.  S  /\  U  e.  S )  /\  ( a  e.  (
Base `  (Scalar `  W
) )  /\  u  e.  ( T  .(+)  U ) ) )  ->  (
a ( .s `  W ) u )  e.  ( T  .(+)  U ) )
4645ralrimivva 2971 . 2  |-  ( ( W  e.  LMod  /\  T  e.  S  /\  U  e.  S )  ->  A. a  e.  ( Base `  (Scalar `  W ) ) A. u  e.  ( T  .(+) 
U ) ( a ( .s `  W
) u )  e.  ( T  .(+)  U ) )
4726, 28, 19, 27, 3islss4 18962 . . 3  |-  ( W  e.  LMod  ->  ( ( T  .(+)  U )  e.  S  <->  ( ( T 
.(+)  U )  e.  (SubGrp `  W )  /\  A. a  e.  ( Base `  (Scalar `  W )
) A. u  e.  ( T  .(+)  U ) ( a ( .s
`  W ) u )  e.  ( T 
.(+)  U ) ) ) )
48473ad2ant1 1082 . 2  |-  ( ( W  e.  LMod  /\  T  e.  S  /\  U  e.  S )  ->  (
( T  .(+)  U )  e.  S  <->  ( ( T  .(+)  U )  e.  (SubGrp `  W )  /\  A. a  e.  (
Base `  (Scalar `  W
) ) A. u  e.  ( T  .(+)  U ) ( a ( .s
`  W ) u )  e.  ( T 
.(+)  U ) ) ) )
4910, 46, 48mpbir2and 957 1  |-  ( ( W  e.  LMod  /\  T  e.  S  /\  U  e.  S )  ->  ( T  .(+)  U )  e.  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941  Scalarcsca 15944   .scvsca 15945  SubGrpcsubg 17588   LSSumclsm 18049   Abelcabl 18194   LModclmod 18863   LSubSpclss 18932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-cntz 17750  df-lsm 18051  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-lss 18933
This theorem is referenced by:  lsmelval2  19085  lsmsp  19086  lspprabs  19095  pj1lmhm  19100  lspabs3  19121  pjth  23210  lshpnelb  34271  lsmsat  34295  lsmcv2  34316  lcvat  34317  lcvexchlem4  34324  lcvexchlem5  34325  lcv1  34328  lsatexch  34330  lsatcv0eq  34334  lsatcvatlem  34336  lsatcvat2  34338  lsatcvat3  34339  lkrlsp  34389  dia2dimlem7  36359  dihjustlem  36505  dihord1  36507  dihlsscpre  36523  dihjatcclem2  36708  dihjat1lem  36717  dochexmidlem5  36753  dochexmidlem6  36754  dochexmidlem8  36756  lcfrlem23  36854  mapdlsmcl  36952  mapdlsm  36953  mapdpglem1  36961  mapdpglem2a  36963  mapdindp0  37008  mapdheq4lem  37020  mapdh6lem1N  37022  mapdh6lem2N  37023  hdmap1l6lem1  37097  hdmap1l6lem2  37098  hdmaprnlem3eN  37150  kercvrlsm  37653
  Copyright terms: Public domain W3C validator