| Step | Hyp | Ref
| Expression |
| 1 | | simp1 1061 |
. . . 4
  SubGrp  SubGrp 
     SubGrp    |
| 2 | | subgsubm 17616 |
. . . 4
 SubGrp 
SubMnd    |
| 3 | 1, 2 | syl 17 |
. . 3
  SubGrp  SubGrp 
     SubMnd    |
| 4 | | simp2 1062 |
. . . 4
  SubGrp  SubGrp 
     SubGrp    |
| 5 | | subgsubm 17616 |
. . . 4
 SubGrp 
SubMnd    |
| 6 | 4, 5 | syl 17 |
. . 3
  SubGrp  SubGrp 
     SubMnd    |
| 7 | | simp3 1063 |
. . 3
  SubGrp  SubGrp 
           |
| 8 | | lsmsubg.p |
. . . 4
     |
| 9 | | lsmsubg.z |
. . . 4
Cntz   |
| 10 | 8, 9 | lsmsubm 18068 |
. . 3
  SubMnd  SubMnd 
       SubMnd    |
| 11 | 3, 6, 7, 10 | syl3anc 1326 |
. 2
  SubGrp  SubGrp 
       SubMnd    |
| 12 | | eqid 2622 |
. . . . . 6
       |
| 13 | 12, 8 | lsmelval 18064 |
. . . . 5
  SubGrp  SubGrp  
   

  
       |
| 14 | 13 | 3adant3 1081 |
. . . 4
  SubGrp  SubGrp 
        

  
       |
| 15 | 1 | adantr 481 |
. . . . . . . . . 10
   SubGrp  SubGrp 
       
SubGrp    |
| 16 | | subgrcl 17599 |
. . . . . . . . . 10
 SubGrp 
  |
| 17 | 15, 16 | syl 17 |
. . . . . . . . 9
   SubGrp  SubGrp 
       
  |
| 18 | | eqid 2622 |
. . . . . . . . . . . 12
         |
| 19 | 18 | subgss 17595 |
. . . . . . . . . . 11
 SubGrp 
      |
| 20 | 15, 19 | syl 17 |
. . . . . . . . . 10
   SubGrp  SubGrp 
              |
| 21 | | simprl 794 |
. . . . . . . . . 10
   SubGrp  SubGrp 
          |
| 22 | 20, 21 | sseldd 3604 |
. . . . . . . . 9
   SubGrp  SubGrp 
              |
| 23 | 4 | adantr 481 |
. . . . . . . . . . 11
   SubGrp  SubGrp 
       
SubGrp    |
| 24 | 18 | subgss 17595 |
. . . . . . . . . . 11
 SubGrp 
      |
| 25 | 23, 24 | syl 17 |
. . . . . . . . . 10
   SubGrp  SubGrp 
              |
| 26 | | simprr 796 |
. . . . . . . . . 10
   SubGrp  SubGrp 
          |
| 27 | 25, 26 | sseldd 3604 |
. . . . . . . . 9
   SubGrp  SubGrp 
              |
| 28 | | eqid 2622 |
. . . . . . . . . 10
           |
| 29 | 18, 12, 28 | grpinvadd 17493 |
. . . . . . . . 9
 
                                    
               |
| 30 | 17, 22, 27, 29 | syl3anc 1326 |
. . . . . . . 8
   SubGrp  SubGrp 
                                   
               |
| 31 | 7 | adantr 481 |
. . . . . . . . . 10
   SubGrp  SubGrp 
              |
| 32 | 28 | subginvcl 17603 |
. . . . . . . . . . 11
  SubGrp              |
| 33 | 15, 21, 32 | syl2anc 693 |
. . . . . . . . . 10
   SubGrp  SubGrp 
                   |
| 34 | 31, 33 | sseldd 3604 |
. . . . . . . . 9
   SubGrp  SubGrp 
                       |
| 35 | 28 | subginvcl 17603 |
. . . . . . . . . 10
  SubGrp              |
| 36 | 23, 26, 35 | syl2anc 693 |
. . . . . . . . 9
   SubGrp  SubGrp 
                   |
| 37 | 12, 9 | cntzi 17762 |
. . . . . . . . 9
                                    
                                        |
| 38 | 34, 36, 37 | syl2anc 693 |
. . . . . . . 8
   SubGrp  SubGrp 
                                                            |
| 39 | 30, 38 | eqtr4d 2659 |
. . . . . . 7
   SubGrp  SubGrp 
                                   
               |
| 40 | 12, 8 | lsmelvali 18065 |
. . . . . . . 8
   SubGrp  SubGrp  
                    
                             |
| 41 | 15, 23, 33, 36, 40 | syl22anc 1327 |
. . . . . . 7
   SubGrp  SubGrp 
                                 
   |
| 42 | 39, 41 | eqeltrd 2701 |
. . . . . 6
   SubGrp  SubGrp 
                            |
| 43 | | fveq2 6191 |
. . . . . . 7
                           
       |
| 44 | 43 | eleq1d 2686 |
. . . . . 6
                   
                     |
| 45 | 42, 44 | syl5ibrcom 237 |
. . . . 5
   SubGrp  SubGrp 
                              |
| 46 | 45 | rexlimdvva 3038 |
. . . 4
  SubGrp  SubGrp 
      

                     |
| 47 | 14, 46 | sylbid 230 |
. . 3
  SubGrp  SubGrp 
                      |
| 48 | 47 | ralrimiv 2965 |
. 2
  SubGrp  SubGrp 
      
               |
| 49 | 1, 16 | syl 17 |
. . 3
  SubGrp  SubGrp 
       |
| 50 | 28 | issubg3 17612 |
. . 3
    SubGrp     SubMnd  
                  |
| 51 | 49, 50 | syl 17 |
. 2
  SubGrp  SubGrp 
        SubGrp 
   SubMnd   
                 |
| 52 | 11, 48, 51 | mpbir2and 957 |
1
  SubGrp  SubGrp 
       SubGrp    |