MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmsubg Structured version   Visualization version   Unicode version

Theorem lsmsubg 18069
Description: The sum of two commuting subgroups is a subgroup. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmsubg.p  |-  .(+)  =  (
LSSum `  G )
lsmsubg.z  |-  Z  =  (Cntz `  G )
Assertion
Ref Expression
lsmsubg  |-  ( ( T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( T  .(+)  U )  e.  (SubGrp `  G ) )

Proof of Theorem lsmsubg
Dummy variables  a 
b  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1061 . . . 4  |-  ( ( T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )  /\  T  C_  ( Z `
 U ) )  ->  T  e.  (SubGrp `  G ) )
2 subgsubm 17616 . . . 4  |-  ( T  e.  (SubGrp `  G
)  ->  T  e.  (SubMnd `  G ) )
31, 2syl 17 . . 3  |-  ( ( T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )  /\  T  C_  ( Z `
 U ) )  ->  T  e.  (SubMnd `  G ) )
4 simp2 1062 . . . 4  |-  ( ( T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )  /\  T  C_  ( Z `
 U ) )  ->  U  e.  (SubGrp `  G ) )
5 subgsubm 17616 . . . 4  |-  ( U  e.  (SubGrp `  G
)  ->  U  e.  (SubMnd `  G ) )
64, 5syl 17 . . 3  |-  ( ( T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )  /\  T  C_  ( Z `
 U ) )  ->  U  e.  (SubMnd `  G ) )
7 simp3 1063 . . 3  |-  ( ( T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )  /\  T  C_  ( Z `
 U ) )  ->  T  C_  ( Z `  U )
)
8 lsmsubg.p . . . 4  |-  .(+)  =  (
LSSum `  G )
9 lsmsubg.z . . . 4  |-  Z  =  (Cntz `  G )
108, 9lsmsubm 18068 . . 3  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( T  .(+)  U )  e.  (SubMnd `  G ) )
113, 6, 7, 10syl3anc 1326 . 2  |-  ( ( T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( T  .(+)  U )  e.  (SubMnd `  G ) )
12 eqid 2622 . . . . . 6  |-  ( +g  `  G )  =  ( +g  `  G )
1312, 8lsmelval 18064 . . . . 5  |-  ( ( T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )
)  ->  ( x  e.  ( T  .(+)  U )  <->  E. a  e.  T  E. b  e.  U  x  =  ( a
( +g  `  G ) b ) ) )
14133adant3 1081 . . . 4  |-  ( ( T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( x  e.  ( T  .(+)  U )  <->  E. a  e.  T  E. b  e.  U  x  =  ( a
( +g  `  G ) b ) ) )
151adantr 481 . . . . . . . . . 10  |-  ( ( ( T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( a  e.  T  /\  b  e.  U ) )  ->  T  e.  (SubGrp `  G
) )
16 subgrcl 17599 . . . . . . . . . 10  |-  ( T  e.  (SubGrp `  G
)  ->  G  e.  Grp )
1715, 16syl 17 . . . . . . . . 9  |-  ( ( ( T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( a  e.  T  /\  b  e.  U ) )  ->  G  e.  Grp )
18 eqid 2622 . . . . . . . . . . . 12  |-  ( Base `  G )  =  (
Base `  G )
1918subgss 17595 . . . . . . . . . . 11  |-  ( T  e.  (SubGrp `  G
)  ->  T  C_  ( Base `  G ) )
2015, 19syl 17 . . . . . . . . . 10  |-  ( ( ( T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( a  e.  T  /\  b  e.  U ) )  ->  T  C_  ( Base `  G
) )
21 simprl 794 . . . . . . . . . 10  |-  ( ( ( T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( a  e.  T  /\  b  e.  U ) )  -> 
a  e.  T )
2220, 21sseldd 3604 . . . . . . . . 9  |-  ( ( ( T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( a  e.  T  /\  b  e.  U ) )  -> 
a  e.  ( Base `  G ) )
234adantr 481 . . . . . . . . . . 11  |-  ( ( ( T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( a  e.  T  /\  b  e.  U ) )  ->  U  e.  (SubGrp `  G
) )
2418subgss 17595 . . . . . . . . . . 11  |-  ( U  e.  (SubGrp `  G
)  ->  U  C_  ( Base `  G ) )
2523, 24syl 17 . . . . . . . . . 10  |-  ( ( ( T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( a  e.  T  /\  b  e.  U ) )  ->  U  C_  ( Base `  G
) )
26 simprr 796 . . . . . . . . . 10  |-  ( ( ( T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( a  e.  T  /\  b  e.  U ) )  -> 
b  e.  U )
2725, 26sseldd 3604 . . . . . . . . 9  |-  ( ( ( T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( a  e.  T  /\  b  e.  U ) )  -> 
b  e.  ( Base `  G ) )
28 eqid 2622 . . . . . . . . . 10  |-  ( invg `  G )  =  ( invg `  G )
2918, 12, 28grpinvadd 17493 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  a  e.  ( Base `  G )  /\  b  e.  ( Base `  G
) )  ->  (
( invg `  G ) `  (
a ( +g  `  G
) b ) )  =  ( ( ( invg `  G
) `  b )
( +g  `  G ) ( ( invg `  G ) `  a
) ) )
3017, 22, 27, 29syl3anc 1326 . . . . . . . 8  |-  ( ( ( T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( a  e.  T  /\  b  e.  U ) )  -> 
( ( invg `  G ) `  (
a ( +g  `  G
) b ) )  =  ( ( ( invg `  G
) `  b )
( +g  `  G ) ( ( invg `  G ) `  a
) ) )
317adantr 481 . . . . . . . . . 10  |-  ( ( ( T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( a  e.  T  /\  b  e.  U ) )  ->  T  C_  ( Z `  U ) )
3228subginvcl 17603 . . . . . . . . . . 11  |-  ( ( T  e.  (SubGrp `  G )  /\  a  e.  T )  ->  (
( invg `  G ) `  a
)  e.  T )
3315, 21, 32syl2anc 693 . . . . . . . . . 10  |-  ( ( ( T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( a  e.  T  /\  b  e.  U ) )  -> 
( ( invg `  G ) `  a
)  e.  T )
3431, 33sseldd 3604 . . . . . . . . 9  |-  ( ( ( T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( a  e.  T  /\  b  e.  U ) )  -> 
( ( invg `  G ) `  a
)  e.  ( Z `
 U ) )
3528subginvcl 17603 . . . . . . . . . 10  |-  ( ( U  e.  (SubGrp `  G )  /\  b  e.  U )  ->  (
( invg `  G ) `  b
)  e.  U )
3623, 26, 35syl2anc 693 . . . . . . . . 9  |-  ( ( ( T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( a  e.  T  /\  b  e.  U ) )  -> 
( ( invg `  G ) `  b
)  e.  U )
3712, 9cntzi 17762 . . . . . . . . 9  |-  ( ( ( ( invg `  G ) `  a
)  e.  ( Z `
 U )  /\  ( ( invg `  G ) `  b
)  e.  U )  ->  ( ( ( invg `  G
) `  a )
( +g  `  G ) ( ( invg `  G ) `  b
) )  =  ( ( ( invg `  G ) `  b
) ( +g  `  G
) ( ( invg `  G ) `
 a ) ) )
3834, 36, 37syl2anc 693 . . . . . . . 8  |-  ( ( ( T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( a  e.  T  /\  b  e.  U ) )  -> 
( ( ( invg `  G ) `
 a ) ( +g  `  G ) ( ( invg `  G ) `  b
) )  =  ( ( ( invg `  G ) `  b
) ( +g  `  G
) ( ( invg `  G ) `
 a ) ) )
3930, 38eqtr4d 2659 . . . . . . 7  |-  ( ( ( T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( a  e.  T  /\  b  e.  U ) )  -> 
( ( invg `  G ) `  (
a ( +g  `  G
) b ) )  =  ( ( ( invg `  G
) `  a )
( +g  `  G ) ( ( invg `  G ) `  b
) ) )
4012, 8lsmelvali 18065 . . . . . . . 8  |-  ( ( ( T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )
)  /\  ( (
( invg `  G ) `  a
)  e.  T  /\  ( ( invg `  G ) `  b
)  e.  U ) )  ->  ( (
( invg `  G ) `  a
) ( +g  `  G
) ( ( invg `  G ) `
 b ) )  e.  ( T  .(+)  U ) )
4115, 23, 33, 36, 40syl22anc 1327 . . . . . . 7  |-  ( ( ( T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( a  e.  T  /\  b  e.  U ) )  -> 
( ( ( invg `  G ) `
 a ) ( +g  `  G ) ( ( invg `  G ) `  b
) )  e.  ( T  .(+)  U )
)
4239, 41eqeltrd 2701 . . . . . 6  |-  ( ( ( T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( a  e.  T  /\  b  e.  U ) )  -> 
( ( invg `  G ) `  (
a ( +g  `  G
) b ) )  e.  ( T  .(+)  U ) )
43 fveq2 6191 . . . . . . 7  |-  ( x  =  ( a ( +g  `  G ) b )  ->  (
( invg `  G ) `  x
)  =  ( ( invg `  G
) `  ( a
( +g  `  G ) b ) ) )
4443eleq1d 2686 . . . . . 6  |-  ( x  =  ( a ( +g  `  G ) b )  ->  (
( ( invg `  G ) `  x
)  e.  ( T 
.(+)  U )  <->  ( ( invg `  G ) `
 ( a ( +g  `  G ) b ) )  e.  ( T  .(+)  U ) ) )
4542, 44syl5ibrcom 237 . . . . 5  |-  ( ( ( T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( a  e.  T  /\  b  e.  U ) )  -> 
( x  =  ( a ( +g  `  G
) b )  -> 
( ( invg `  G ) `  x
)  e.  ( T 
.(+)  U ) ) )
4645rexlimdvva 3038 . . . 4  |-  ( ( T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( E. a  e.  T  E. b  e.  U  x  =  ( a ( +g  `  G ) b )  ->  ( ( invg `  G ) `
 x )  e.  ( T  .(+)  U ) ) )
4714, 46sylbid 230 . . 3  |-  ( ( T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( x  e.  ( T  .(+)  U )  ->  ( ( invg `  G ) `
 x )  e.  ( T  .(+)  U ) ) )
4847ralrimiv 2965 . 2  |-  ( ( T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )  /\  T  C_  ( Z `
 U ) )  ->  A. x  e.  ( T  .(+)  U )
( ( invg `  G ) `  x
)  e.  ( T 
.(+)  U ) )
491, 16syl 17 . . 3  |-  ( ( T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )  /\  T  C_  ( Z `
 U ) )  ->  G  e.  Grp )
5028issubg3 17612 . . 3  |-  ( G  e.  Grp  ->  (
( T  .(+)  U )  e.  (SubGrp `  G
)  <->  ( ( T 
.(+)  U )  e.  (SubMnd `  G )  /\  A. x  e.  ( T  .(+) 
U ) ( ( invg `  G
) `  x )  e.  ( T  .(+)  U ) ) ) )
5149, 50syl 17 . 2  |-  ( ( T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( ( T 
.(+)  U )  e.  (SubGrp `  G )  <->  ( ( T  .(+)  U )  e.  (SubMnd `  G )  /\  A. x  e.  ( T  .(+)  U )
( ( invg `  G ) `  x
)  e.  ( T 
.(+)  U ) ) ) )
5211, 48, 51mpbir2and 957 1  |-  ( ( T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( T  .(+)  U )  e.  (SubGrp `  G ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    C_ wss 3574   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941  SubMndcsubmnd 17334   Grpcgrp 17422   invgcminusg 17423  SubGrpcsubg 17588  Cntzccntz 17748   LSSumclsm 18049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-subg 17591  df-cntz 17750  df-lsm 18051
This theorem is referenced by:  pj1ghm  18116  lsmsubg2  18262  dprd2da  18441  dmdprdsplit2lem  18444  dprdsplit  18447
  Copyright terms: Public domain W3C validator