MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsslss Structured version   Visualization version   Unicode version

Theorem lsslss 18961
Description: The subspaces of a subspace are the smaller subspaces. (Contributed by Stefan O'Rear, 12-Dec-2014.)
Hypotheses
Ref Expression
lsslss.x  |-  X  =  ( Ws  U )
lsslss.s  |-  S  =  ( LSubSp `  W )
lsslss.t  |-  T  =  ( LSubSp `  X )
Assertion
Ref Expression
lsslss  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( V  e.  T  <->  ( V  e.  S  /\  V  C_  U ) ) )

Proof of Theorem lsslss
StepHypRef Expression
1 lsslss.x . . . 4  |-  X  =  ( Ws  U )
2 lsslss.s . . . 4  |-  S  =  ( LSubSp `  W )
31, 2lsslmod 18960 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  X  e.  LMod )
4 eqid 2622 . . . 4  |-  ( Xs  V )  =  ( Xs  V )
5 eqid 2622 . . . 4  |-  ( Base `  X )  =  (
Base `  X )
6 lsslss.t . . . 4  |-  T  =  ( LSubSp `  X )
74, 5, 6islss3 18959 . . 3  |-  ( X  e.  LMod  ->  ( V  e.  T  <->  ( V  C_  ( Base `  X
)  /\  ( Xs  V
)  e.  LMod )
) )
83, 7syl 17 . 2  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( V  e.  T  <->  ( V  C_  ( Base `  X
)  /\  ( Xs  V
)  e.  LMod )
) )
9 eqid 2622 . . . . . . 7  |-  ( Base `  W )  =  (
Base `  W )
109, 2lssss 18937 . . . . . 6  |-  ( U  e.  S  ->  U  C_  ( Base `  W
) )
1110adantl 482 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  C_  ( Base `  W
) )
121, 9ressbas2 15931 . . . . 5  |-  ( U 
C_  ( Base `  W
)  ->  U  =  ( Base `  X )
)
1311, 12syl 17 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  =  ( Base `  X
) )
1413sseq2d 3633 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( V  C_  U  <->  V  C_  ( Base `  X ) ) )
1514anbi1d 741 . 2  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  (
( V  C_  U  /\  ( Xs  V )  e.  LMod ) 
<->  ( V  C_  ( Base `  X )  /\  ( Xs  V )  e.  LMod ) ) )
16 sstr2 3610 . . . . . . 7  |-  ( V 
C_  U  ->  ( U  C_  ( Base `  W
)  ->  V  C_  ( Base `  W ) ) )
1711, 16mpan9 486 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  V  C_  U
)  ->  V  C_  ( Base `  W ) )
1817biantrurd 529 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  V  C_  U
)  ->  ( ( Ws  V )  e.  LMod  <->  ( V  C_  ( Base `  W
)  /\  ( Ws  V
)  e.  LMod )
) )
191oveq1i 6660 . . . . . . 7  |-  ( Xs  V )  =  ( ( Ws  U )s  V )
20 ressabs 15939 . . . . . . . 8  |-  ( ( U  e.  S  /\  V  C_  U )  -> 
( ( Ws  U )s  V )  =  ( Ws  V ) )
2120adantll 750 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  V  C_  U
)  ->  ( ( Ws  U )s  V )  =  ( Ws  V ) )
2219, 21syl5eq 2668 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  V  C_  U
)  ->  ( Xs  V
)  =  ( Ws  V ) )
2322eleq1d 2686 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  V  C_  U
)  ->  ( ( Xs  V )  e.  LMod  <->  ( Ws  V )  e.  LMod ) )
24 eqid 2622 . . . . . . 7  |-  ( Ws  V )  =  ( Ws  V )
2524, 9, 2islss3 18959 . . . . . 6  |-  ( W  e.  LMod  ->  ( V  e.  S  <->  ( V  C_  ( Base `  W
)  /\  ( Ws  V
)  e.  LMod )
) )
2625ad2antrr 762 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  V  C_  U
)  ->  ( V  e.  S  <->  ( V  C_  ( Base `  W )  /\  ( Ws  V )  e.  LMod ) ) )
2718, 23, 263bitr4d 300 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  V  C_  U
)  ->  ( ( Xs  V )  e.  LMod  <->  V  e.  S ) )
2827pm5.32da 673 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  (
( V  C_  U  /\  ( Xs  V )  e.  LMod ) 
<->  ( V  C_  U  /\  V  e.  S
) ) )
29 ancom 466 . . 3  |-  ( ( V  C_  U  /\  V  e.  S )  <->  ( V  e.  S  /\  V  C_  U ) )
3028, 29syl6bb 276 . 2  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  (
( V  C_  U  /\  ( Xs  V )  e.  LMod ) 
<->  ( V  e.  S  /\  V  C_  U ) ) )
318, 15, 303bitr2d 296 1  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( V  e.  T  <->  ( V  e.  S  /\  V  C_  U ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    C_ wss 3574   ` cfv 5888  (class class class)co 6650   Basecbs 15857   ↾s cress 15858   LModclmod 18863   LSubSpclss 18932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-sca 15957  df-vsca 15958  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-lss 18933
This theorem is referenced by:  lsslsp  19015  mplbas2  19470  mplind  19502  lcdlss  36908  lnmlsslnm  37651  lmhmlnmsplit  37657
  Copyright terms: Public domain W3C validator