MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegfval Structured version   Visualization version   Unicode version

Theorem mdegfval 23822
Description: Value of the multivariate degree function. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Revised by AV, 25-Jun-2019.)
Hypotheses
Ref Expression
mdegval.d  |-  D  =  ( I mDeg  R )
mdegval.p  |-  P  =  ( I mPoly  R )
mdegval.b  |-  B  =  ( Base `  P
)
mdegval.z  |-  .0.  =  ( 0g `  R )
mdegval.a  |-  A  =  { m  e.  ( NN0  ^m  I )  |  ( `' m " NN )  e.  Fin }
mdegval.h  |-  H  =  ( h  e.  A  |->  (fld 
gsumg  h ) )
Assertion
Ref Expression
mdegfval  |-  D  =  ( f  e.  B  |->  sup ( ( H
" ( f supp  .0.  ) ) ,  RR* ,  <  ) )
Distinct variable groups:    A, h    B, f    f, I    m, I    R, f    .0. , h    f, h
Allowed substitution hints:    A( f, m)    B( h, m)    D( f, h, m)    P( f, h, m)    R( h, m)    H( f, h, m)    I( h)    .0. ( f, m)

Proof of Theorem mdegfval
Dummy variables  i 
r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdegval.d . 2  |-  D  =  ( I mDeg  R )
2 oveq12 6659 . . . . . . . . 9  |-  ( ( i  =  I  /\  r  =  R )  ->  ( i mPoly  r )  =  ( I mPoly  R
) )
3 mdegval.p . . . . . . . . 9  |-  P  =  ( I mPoly  R )
42, 3syl6eqr 2674 . . . . . . . 8  |-  ( ( i  =  I  /\  r  =  R )  ->  ( i mPoly  r )  =  P )
54fveq2d 6195 . . . . . . 7  |-  ( ( i  =  I  /\  r  =  R )  ->  ( Base `  (
i mPoly  r ) )  =  ( Base `  P
) )
6 mdegval.b . . . . . . 7  |-  B  =  ( Base `  P
)
75, 6syl6eqr 2674 . . . . . 6  |-  ( ( i  =  I  /\  r  =  R )  ->  ( Base `  (
i mPoly  r ) )  =  B )
8 fveq2 6191 . . . . . . . . . . . 12  |-  ( r  =  R  ->  ( 0g `  r )  =  ( 0g `  R
) )
9 mdegval.z . . . . . . . . . . . 12  |-  .0.  =  ( 0g `  R )
108, 9syl6eqr 2674 . . . . . . . . . . 11  |-  ( r  =  R  ->  ( 0g `  r )  =  .0.  )
1110oveq2d 6666 . . . . . . . . . 10  |-  ( r  =  R  ->  (
f supp  ( 0g `  r ) )  =  ( f supp  .0.  )
)
1211mpteq1d 4738 . . . . . . . . 9  |-  ( r  =  R  ->  (
h  e.  ( f supp  ( 0g `  r
) )  |->  (fld  gsumg  h ) )  =  ( h  e.  ( f supp  .0.  )  |->  (fld  gsumg  h ) ) )
1312rneqd 5353 . . . . . . . 8  |-  ( r  =  R  ->  ran  ( h  e.  (
f supp  ( 0g `  r ) )  |->  (fld  gsumg  h ) )  =  ran  (
h  e.  ( f supp 
.0.  )  |->  (fld  gsumg  h ) ) )
1413supeq1d 8352 . . . . . . 7  |-  ( r  =  R  ->  sup ( ran  ( h  e.  ( f supp  ( 0g
`  r ) ) 
|->  (fld 
gsumg  h ) ) , 
RR* ,  <  )  =  sup ( ran  (
h  e.  ( f supp 
.0.  )  |->  (fld  gsumg  h ) ) , 
RR* ,  <  ) )
1514adantl 482 . . . . . 6  |-  ( ( i  =  I  /\  r  =  R )  ->  sup ( ran  (
h  e.  ( f supp  ( 0g `  r
) )  |->  (fld  gsumg  h ) ) , 
RR* ,  <  )  =  sup ( ran  (
h  e.  ( f supp 
.0.  )  |->  (fld  gsumg  h ) ) , 
RR* ,  <  ) )
167, 15mpteq12dv 4733 . . . . 5  |-  ( ( i  =  I  /\  r  =  R )  ->  ( f  e.  (
Base `  ( i mPoly  r ) )  |->  sup ( ran  ( h  e.  ( f supp  ( 0g `  r ) ) 
|->  (fld 
gsumg  h ) ) , 
RR* ,  <  ) )  =  ( f  e.  B  |->  sup ( ran  (
h  e.  ( f supp 
.0.  )  |->  (fld  gsumg  h ) ) , 
RR* ,  <  ) ) )
17 df-mdeg 23815 . . . . 5  |- mDeg  =  ( i  e.  _V , 
r  e.  _V  |->  ( f  e.  ( Base `  ( i mPoly  r ) )  |->  sup ( ran  (
h  e.  ( f supp  ( 0g `  r
) )  |->  (fld  gsumg  h ) ) , 
RR* ,  <  ) ) )
18 fvex 6201 . . . . . . 7  |-  ( Base `  P )  e.  _V
196, 18eqeltri 2697 . . . . . 6  |-  B  e. 
_V
2019mptex 6486 . . . . 5  |-  ( f  e.  B  |->  sup ( ran  ( h  e.  ( f supp  .0.  )  |->  (fld  gsumg  h ) ) ,  RR* ,  <  ) )  e.  _V
2116, 17, 20ovmpt2a 6791 . . . 4  |-  ( ( I  e.  _V  /\  R  e.  _V )  ->  ( I mDeg  R )  =  ( f  e.  B  |->  sup ( ran  (
h  e.  ( f supp 
.0.  )  |->  (fld  gsumg  h ) ) , 
RR* ,  <  ) ) )
22 mdegval.h . . . . . . . . . 10  |-  H  =  ( h  e.  A  |->  (fld 
gsumg  h ) )
2322reseq1i 5392 . . . . . . . . 9  |-  ( H  |`  ( f supp  .0.  )
)  =  ( ( h  e.  A  |->  (fld  gsumg  h ) )  |`  ( f supp  .0.  ) )
24 suppssdm 7308 . . . . . . . . . . 11  |-  ( f supp 
.0.  )  C_  dom  f
25 eqid 2622 . . . . . . . . . . . . 13  |-  ( Base `  R )  =  (
Base `  R )
26 mdegval.a . . . . . . . . . . . . 13  |-  A  =  { m  e.  ( NN0  ^m  I )  |  ( `' m " NN )  e.  Fin }
27 simpr 477 . . . . . . . . . . . . 13  |-  ( ( ( I  e.  _V  /\  R  e.  _V )  /\  f  e.  B
)  ->  f  e.  B )
283, 25, 6, 26, 27mplelf 19433 . . . . . . . . . . . 12  |-  ( ( ( I  e.  _V  /\  R  e.  _V )  /\  f  e.  B
)  ->  f : A
--> ( Base `  R
) )
29 fdm 6051 . . . . . . . . . . . 12  |-  ( f : A --> ( Base `  R )  ->  dom  f  =  A )
3028, 29syl 17 . . . . . . . . . . 11  |-  ( ( ( I  e.  _V  /\  R  e.  _V )  /\  f  e.  B
)  ->  dom  f  =  A )
3124, 30syl5sseq 3653 . . . . . . . . . 10  |-  ( ( ( I  e.  _V  /\  R  e.  _V )  /\  f  e.  B
)  ->  ( f supp  .0.  )  C_  A )
3231resmptd 5452 . . . . . . . . 9  |-  ( ( ( I  e.  _V  /\  R  e.  _V )  /\  f  e.  B
)  ->  ( (
h  e.  A  |->  (fld  gsumg  h ) )  |`  ( f supp  .0.  ) )  =  ( h  e.  ( f supp 
.0.  )  |->  (fld  gsumg  h ) ) )
3323, 32syl5req 2669 . . . . . . . 8  |-  ( ( ( I  e.  _V  /\  R  e.  _V )  /\  f  e.  B
)  ->  ( h  e.  ( f supp  .0.  )  |->  (fld 
gsumg  h ) )  =  ( H  |`  (
f supp  .0.  ) )
)
3433rneqd 5353 . . . . . . 7  |-  ( ( ( I  e.  _V  /\  R  e.  _V )  /\  f  e.  B
)  ->  ran  ( h  e.  ( f supp  .0.  )  |->  (fld 
gsumg  h ) )  =  ran  ( H  |`  ( f supp  .0.  )
) )
35 df-ima 5127 . . . . . . 7  |-  ( H
" ( f supp  .0.  ) )  =  ran  ( H  |`  ( f supp 
.0.  ) )
3634, 35syl6eqr 2674 . . . . . 6  |-  ( ( ( I  e.  _V  /\  R  e.  _V )  /\  f  e.  B
)  ->  ran  ( h  e.  ( f supp  .0.  )  |->  (fld 
gsumg  h ) )  =  ( H " (
f supp  .0.  ) )
)
3736supeq1d 8352 . . . . 5  |-  ( ( ( I  e.  _V  /\  R  e.  _V )  /\  f  e.  B
)  ->  sup ( ran  ( h  e.  ( f supp  .0.  )  |->  (fld  gsumg  h ) ) ,  RR* ,  <  )  =  sup ( ( H " ( f supp 
.0.  ) ) , 
RR* ,  <  ) )
3837mpteq2dva 4744 . . . 4  |-  ( ( I  e.  _V  /\  R  e.  _V )  ->  ( f  e.  B  |->  sup ( ran  (
h  e.  ( f supp 
.0.  )  |->  (fld  gsumg  h ) ) , 
RR* ,  <  ) )  =  ( f  e.  B  |->  sup ( ( H
" ( f supp  .0.  ) ) ,  RR* ,  <  ) ) )
3921, 38eqtrd 2656 . . 3  |-  ( ( I  e.  _V  /\  R  e.  _V )  ->  ( I mDeg  R )  =  ( f  e.  B  |->  sup ( ( H
" ( f supp  .0.  ) ) ,  RR* ,  <  ) ) )
40 reldmmdeg 23817 . . . . . 6  |-  Rel  dom mDeg
4140ovprc 6683 . . . . 5  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  ( I mDeg  R )  =  (/) )
42 mpt0 6021 . . . . 5  |-  ( f  e.  (/)  |->  sup ( ( H
" ( f supp  .0.  ) ) ,  RR* ,  <  ) )  =  (/)
4341, 42syl6eqr 2674 . . . 4  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  ( I mDeg  R )  =  ( f  e.  (/)  |->  sup ( ( H
" ( f supp  .0.  ) ) ,  RR* ,  <  ) ) )
44 reldmmpl 19427 . . . . . . . . 9  |-  Rel  dom mPoly
4544ovprc 6683 . . . . . . . 8  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  ( I mPoly  R )  =  (/) )
463, 45syl5eq 2668 . . . . . . 7  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  P  =  (/) )
4746fveq2d 6195 . . . . . 6  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  ( Base `  P
)  =  ( Base `  (/) ) )
48 base0 15912 . . . . . 6  |-  (/)  =  (
Base `  (/) )
4947, 6, 483eqtr4g 2681 . . . . 5  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  B  =  (/) )
5049mpteq1d 4738 . . . 4  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  ( f  e.  B  |->  sup ( ( H
" ( f supp  .0.  ) ) ,  RR* ,  <  ) )  =  ( f  e.  (/)  |->  sup ( ( H "
( f supp  .0.  )
) ,  RR* ,  <  ) ) )
5143, 50eqtr4d 2659 . . 3  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  ( I mDeg  R )  =  ( f  e.  B  |->  sup ( ( H
" ( f supp  .0.  ) ) ,  RR* ,  <  ) ) )
5239, 51pm2.61i 176 . 2  |-  ( I mDeg 
R )  =  ( f  e.  B  |->  sup ( ( H "
( f supp  .0.  )
) ,  RR* ,  <  ) )
531, 52eqtri 2644 1  |-  D  =  ( f  e.  B  |->  sup ( ( H
" ( f supp  .0.  ) ) ,  RR* ,  <  ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200   (/)c0 3915    |-> cmpt 4729   `'ccnv 5113   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117   -->wf 5884   ` cfv 5888  (class class class)co 6650   supp csupp 7295    ^m cmap 7857   Fincfn 7955   supcsup 8346   RR*cxr 10073    < clt 10074   NNcn 11020   NN0cn0 11292   Basecbs 15857   0gc0g 16100    gsumg cgsu 16101   mPoly cmpl 19353  ℂfldccnfld 19746   mDeg cmdg 23813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-tset 15960  df-psr 19356  df-mpl 19358  df-mdeg 23815
This theorem is referenced by:  mdegval  23823  mdegxrf  23828  mdegpropd  23844
  Copyright terms: Public domain W3C validator