MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulsucdiv2z Structured version   Visualization version   Unicode version

Theorem mulsucdiv2z 15077
Description: An integer multiplied with its successor divided by 2 yields an integer, i.e. an integer multiplied with its successor is even. (Contributed by AV, 19-Jul-2021.)
Assertion
Ref Expression
mulsucdiv2z  |-  ( N  e.  ZZ  ->  (
( N  x.  ( N  +  1 ) )  /  2 )  e.  ZZ )

Proof of Theorem mulsucdiv2z
StepHypRef Expression
1 zeo 11463 . 2  |-  ( N  e.  ZZ  ->  (
( N  /  2
)  e.  ZZ  \/  ( ( N  + 
1 )  /  2
)  e.  ZZ ) )
2 peano2z 11418 . . . . . 6  |-  ( N  e.  ZZ  ->  ( N  +  1 )  e.  ZZ )
3 zmulcl 11426 . . . . . 6  |-  ( ( ( N  /  2
)  e.  ZZ  /\  ( N  +  1
)  e.  ZZ )  ->  ( ( N  /  2 )  x.  ( N  +  1 ) )  e.  ZZ )
42, 3sylan2 491 . . . . 5  |-  ( ( ( N  /  2
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( N  / 
2 )  x.  ( N  +  1 ) )  e.  ZZ )
5 zcn 11382 . . . . . . . 8  |-  ( N  e.  ZZ  ->  N  e.  CC )
62zcnd 11483 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( N  +  1 )  e.  CC )
7 2cnne0 11242 . . . . . . . . 9  |-  ( 2  e.  CC  /\  2  =/=  0 )
87a1i 11 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
2  e.  CC  /\  2  =/=  0 ) )
9 div23 10704 . . . . . . . 8  |-  ( ( N  e.  CC  /\  ( N  +  1
)  e.  CC  /\  ( 2  e.  CC  /\  2  =/=  0 ) )  ->  ( ( N  x.  ( N  +  1 ) )  /  2 )  =  ( ( N  / 
2 )  x.  ( N  +  1 ) ) )
105, 6, 8, 9syl3anc 1326 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
( N  x.  ( N  +  1 ) )  /  2 )  =  ( ( N  /  2 )  x.  ( N  +  1 ) ) )
1110eleq1d 2686 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( ( N  x.  ( N  +  1
) )  /  2
)  e.  ZZ  <->  ( ( N  /  2 )  x.  ( N  +  1 ) )  e.  ZZ ) )
1211adantl 482 . . . . 5  |-  ( ( ( N  /  2
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ( N  x.  ( N  + 
1 ) )  / 
2 )  e.  ZZ  <->  ( ( N  /  2
)  x.  ( N  +  1 ) )  e.  ZZ ) )
134, 12mpbird 247 . . . 4  |-  ( ( ( N  /  2
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( N  x.  ( N  +  1
) )  /  2
)  e.  ZZ )
1413ex 450 . . 3  |-  ( ( N  /  2 )  e.  ZZ  ->  ( N  e.  ZZ  ->  ( ( N  x.  ( N  +  1 ) )  /  2 )  e.  ZZ ) )
15 zmulcl 11426 . . . . . 6  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( N  x.  ( ( N  + 
1 )  /  2
) )  e.  ZZ )
1615ancoms 469 . . . . 5  |-  ( ( ( ( N  + 
1 )  /  2
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  x.  (
( N  +  1 )  /  2 ) )  e.  ZZ )
17 divass 10703 . . . . . . . 8  |-  ( ( N  e.  CC  /\  ( N  +  1
)  e.  CC  /\  ( 2  e.  CC  /\  2  =/=  0 ) )  ->  ( ( N  x.  ( N  +  1 ) )  /  2 )  =  ( N  x.  (
( N  +  1 )  /  2 ) ) )
185, 6, 8, 17syl3anc 1326 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
( N  x.  ( N  +  1 ) )  /  2 )  =  ( N  x.  ( ( N  + 
1 )  /  2
) ) )
1918eleq1d 2686 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( ( N  x.  ( N  +  1
) )  /  2
)  e.  ZZ  <->  ( N  x.  ( ( N  + 
1 )  /  2
) )  e.  ZZ ) )
2019adantl 482 . . . . 5  |-  ( ( ( ( N  + 
1 )  /  2
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ( N  x.  ( N  + 
1 ) )  / 
2 )  e.  ZZ  <->  ( N  x.  ( ( N  +  1 )  /  2 ) )  e.  ZZ ) )
2116, 20mpbird 247 . . . 4  |-  ( ( ( ( N  + 
1 )  /  2
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( N  x.  ( N  +  1
) )  /  2
)  e.  ZZ )
2221ex 450 . . 3  |-  ( ( ( N  +  1 )  /  2 )  e.  ZZ  ->  ( N  e.  ZZ  ->  ( ( N  x.  ( N  +  1 ) )  /  2 )  e.  ZZ ) )
2314, 22jaoi 394 . 2  |-  ( ( ( N  /  2
)  e.  ZZ  \/  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( N  e.  ZZ  ->  ( ( N  x.  ( N  +  1 ) )  /  2 )  e.  ZZ ) )
241, 23mpcom 38 1  |-  ( N  e.  ZZ  ->  (
( N  x.  ( N  +  1 ) )  /  2 )  e.  ZZ )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    / cdiv 10684   2c2 11070   ZZcz 11377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378
This theorem is referenced by:  sqoddm1div8z  15078
  Copyright terms: Public domain W3C validator