Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpcompact2 Structured version   Visualization version   Unicode version

Theorem mzpcompact2 37315
Description: Polynomials are finitary objects and can only reference a finite number of variables, even if the index set is infinite. Thus, every polynomial can be expressed as a (uniquely minimal, although we do not prove that) polynomial on a finite number of variables, which is then extended by adding an arbitrary set of ignored variables. (Contributed by Stefan O'Rear, 9-Oct-2014.)
Assertion
Ref Expression
mzpcompact2  |-  ( A  e.  (mzPoly `  B
)  ->  E. a  e.  Fin  E. b  e.  (mzPoly `  a )
( a  C_  B  /\  A  =  (
c  e.  ( ZZ 
^m  B )  |->  ( b `  ( c  |`  a ) ) ) ) )
Distinct variable groups:    A, a,
b    B, a, b, c
Allowed substitution hint:    A( c)

Proof of Theorem mzpcompact2
Dummy variable  d is distinct from all other variables.
StepHypRef Expression
1 elfvex 6221 . 2  |-  ( A  e.  (mzPoly `  B
)  ->  B  e.  _V )
2 fveq2 6191 . . . . 5  |-  ( d  =  B  ->  (mzPoly `  d )  =  (mzPoly `  B ) )
32eleq2d 2687 . . . 4  |-  ( d  =  B  ->  ( A  e.  (mzPoly `  d
)  <->  A  e.  (mzPoly `  B ) ) )
4 sseq2 3627 . . . . . 6  |-  ( d  =  B  ->  (
a  C_  d  <->  a  C_  B ) )
5 oveq2 6658 . . . . . . . 8  |-  ( d  =  B  ->  ( ZZ  ^m  d )  =  ( ZZ  ^m  B
) )
65mpteq1d 4738 . . . . . . 7  |-  ( d  =  B  ->  (
c  e.  ( ZZ 
^m  d )  |->  ( b `  ( c  |`  a ) ) )  =  ( c  e.  ( ZZ  ^m  B
)  |->  ( b `  ( c  |`  a
) ) ) )
76eqeq2d 2632 . . . . . 6  |-  ( d  =  B  ->  ( A  =  ( c  e.  ( ZZ  ^m  d
)  |->  ( b `  ( c  |`  a
) ) )  <->  A  =  ( c  e.  ( ZZ  ^m  B ) 
|->  ( b `  (
c  |`  a ) ) ) ) )
84, 7anbi12d 747 . . . . 5  |-  ( d  =  B  ->  (
( a  C_  d  /\  A  =  (
c  e.  ( ZZ 
^m  d )  |->  ( b `  ( c  |`  a ) ) ) )  <->  ( a  C_  B  /\  A  =  ( c  e.  ( ZZ 
^m  B )  |->  ( b `  ( c  |`  a ) ) ) ) ) )
982rexbidv 3057 . . . 4  |-  ( d  =  B  ->  ( E. a  e.  Fin  E. b  e.  (mzPoly `  a ) ( a 
C_  d  /\  A  =  ( c  e.  ( ZZ  ^m  d
)  |->  ( b `  ( c  |`  a
) ) ) )  <->  E. a  e.  Fin  E. b  e.  (mzPoly `  a ) ( a 
C_  B  /\  A  =  ( c  e.  ( ZZ  ^m  B
)  |->  ( b `  ( c  |`  a
) ) ) ) ) )
103, 9imbi12d 334 . . 3  |-  ( d  =  B  ->  (
( A  e.  (mzPoly `  d )  ->  E. a  e.  Fin  E. b  e.  (mzPoly `  a )
( a  C_  d  /\  A  =  (
c  e.  ( ZZ 
^m  d )  |->  ( b `  ( c  |`  a ) ) ) ) )  <->  ( A  e.  (mzPoly `  B )  ->  E. a  e.  Fin  E. b  e.  (mzPoly `  a ) ( a 
C_  B  /\  A  =  ( c  e.  ( ZZ  ^m  B
)  |->  ( b `  ( c  |`  a
) ) ) ) ) ) )
11 vex 3203 . . . 4  |-  d  e. 
_V
1211mzpcompact2lem 37314 . . 3  |-  ( A  e.  (mzPoly `  d
)  ->  E. a  e.  Fin  E. b  e.  (mzPoly `  a )
( a  C_  d  /\  A  =  (
c  e.  ( ZZ 
^m  d )  |->  ( b `  ( c  |`  a ) ) ) ) )
1310, 12vtoclg 3266 . 2  |-  ( B  e.  _V  ->  ( A  e.  (mzPoly `  B
)  ->  E. a  e.  Fin  E. b  e.  (mzPoly `  a )
( a  C_  B  /\  A  =  (
c  e.  ( ZZ 
^m  B )  |->  ( b `  ( c  |`  a ) ) ) ) ) )
141, 13mpcom 38 1  |-  ( A  e.  (mzPoly `  B
)  ->  E. a  e.  Fin  E. b  e.  (mzPoly `  a )
( a  C_  B  /\  A  =  (
c  e.  ( ZZ 
^m  B )  |->  ( b `  ( c  |`  a ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   _Vcvv 3200    C_ wss 3574    |-> cmpt 4729    |` cres 5116   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   Fincfn 7955   ZZcz 11377  mzPolycmzp 37285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-mzpcl 37286  df-mzp 37287
This theorem is referenced by:  eldioph2  37325
  Copyright terms: Public domain W3C validator