MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn01to3 Structured version   Visualization version   Unicode version

Theorem nn01to3 11781
Description: A (nonnegative) integer between 1 and 3 must be 1, 2 or 3. (Contributed by Alexander van der Vekens, 13-Sep-2018.)
Assertion
Ref Expression
nn01to3  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  ( N  =  1  \/  N  =  2  \/  N  =  3 ) )

Proof of Theorem nn01to3
StepHypRef Expression
1 3mix3 1232 . . 3  |-  ( N  =  3  ->  ( N  =  1  \/  N  =  2  \/  N  =  3 ) )
21a1d 25 . 2  |-  ( N  =  3  ->  (
( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  -> 
( N  =  1  \/  N  =  2  \/  N  =  3 ) ) )
3 nn0re 11301 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  N  e.  RR )
433ad2ant1 1082 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  N  e.  RR )
5 3re 11094 . . . . . . . . . 10  |-  3  e.  RR
65a1i 11 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  3  e.  RR )
7 simp3 1063 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  N  <_  3 )
84, 6, 7leltned 10190 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  ( N  <  3  <->  3  =/=  N ) )
9 nesym 2850 . . . . . . . 8  |-  ( 3  =/=  N  <->  -.  N  =  3 )
108, 9syl6rbb 277 . . . . . . 7  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  ( -.  N  =  3  <->  N  <  3 ) )
11 elnnnn0c 11338 . . . . . . . . 9  |-  ( N  e.  NN  <->  ( N  e.  NN0  /\  1  <_  N ) )
12 orc 400 . . . . . . . . . . . 12  |-  ( N  =  1  ->  ( N  =  1  \/  N  =  2 ) )
1312a1d 25 . . . . . . . . . . 11  |-  ( N  =  1  ->  ( N  <  3  ->  ( N  =  1  \/  N  =  2 ) ) )
1413a1d 25 . . . . . . . . . 10  |-  ( N  =  1  ->  ( N  e.  NN  ->  ( N  <  3  -> 
( N  =  1  \/  N  =  2 ) ) ) )
15 eluz2b3 11762 . . . . . . . . . . . 12  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( N  e.  NN  /\  N  =/=  1 ) )
16 eluz2 11693 . . . . . . . . . . . . . . . 16  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( 2  e.  ZZ  /\  N  e.  ZZ  /\  2  <_  N ) )
17 2a1 28 . . . . . . . . . . . . . . . . 17  |-  ( N  =  2  ->  (
( 2  e.  ZZ  /\  N  e.  ZZ  /\  2  <_  N )  -> 
( N  <  3  ->  N  =  2 ) ) )
18 zre 11381 . . . . . . . . . . . . . . . . . . . 20  |-  ( 2  e.  ZZ  ->  2  e.  RR )
19 zre 11381 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  ZZ  ->  N  e.  RR )
20 id 22 . . . . . . . . . . . . . . . . . . . 20  |-  ( 2  <_  N  ->  2  <_  N )
21 leltne 10127 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 2  e.  RR  /\  N  e.  RR  /\  2  <_  N )  ->  (
2  <  N  <->  N  =/=  2 ) )
2218, 19, 20, 21syl3an 1368 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2  e.  ZZ  /\  N  e.  ZZ  /\  2  <_  N )  ->  (
2  <  N  <->  N  =/=  2 ) )
23 2z 11409 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  2  e.  ZZ
2423a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( N  e.  ZZ  /\  N  <  3 )  /\  2  <  N
)  ->  2  e.  ZZ )
25 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( N  e.  ZZ  /\  N  <  3 )  /\  2  <  N
)  ->  2  <  N )
26 df-3 11080 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  3  =  ( 2  +  1 )
2726a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( N  e.  ZZ  ->  3  =  ( 2  +  1 ) )
2827breq2d 4665 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( N  e.  ZZ  ->  ( N  <  3  <->  N  <  ( 2  +  1 ) ) )
2928biimpa 501 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( N  e.  ZZ  /\  N  <  3 )  ->  N  <  ( 2  +  1 ) )
3029adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( N  e.  ZZ  /\  N  <  3 )  /\  2  <  N
)  ->  N  <  ( 2  +  1 ) )
31 btwnnz 11453 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( 2  e.  ZZ  /\  2  <  N  /\  N  <  ( 2  +  1 ) )  ->  -.  N  e.  ZZ )
3224, 25, 30, 31syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( N  e.  ZZ  /\  N  <  3 )  /\  2  <  N
)  ->  -.  N  e.  ZZ )
3332pm2.21d 118 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( N  e.  ZZ  /\  N  <  3 )  /\  2  <  N
)  ->  ( N  e.  ZZ  ->  N  = 
2 ) )
3433exp31 630 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( N  e.  ZZ  ->  ( N  <  3  ->  (
2  <  N  ->  ( N  e.  ZZ  ->  N  =  2 ) ) ) )
3534com24 95 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  ZZ  ->  ( N  e.  ZZ  ->  ( 2  <  N  -> 
( N  <  3  ->  N  =  2 ) ) ) )
3635pm2.43i 52 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  ZZ  ->  (
2  <  N  ->  ( N  <  3  ->  N  =  2 ) ) )
37363ad2ant2 1083 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2  e.  ZZ  /\  N  e.  ZZ  /\  2  <_  N )  ->  (
2  <  N  ->  ( N  <  3  ->  N  =  2 ) ) )
3822, 37sylbird 250 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2  e.  ZZ  /\  N  e.  ZZ  /\  2  <_  N )  ->  ( N  =/=  2  ->  ( N  <  3  ->  N  =  2 ) ) )
3938com12 32 . . . . . . . . . . . . . . . . 17  |-  ( N  =/=  2  ->  (
( 2  e.  ZZ  /\  N  e.  ZZ  /\  2  <_  N )  -> 
( N  <  3  ->  N  =  2 ) ) )
4017, 39pm2.61ine 2877 . . . . . . . . . . . . . . . 16  |-  ( ( 2  e.  ZZ  /\  N  e.  ZZ  /\  2  <_  N )  ->  ( N  <  3  ->  N  =  2 ) )
4116, 40sylbi 207 . . . . . . . . . . . . . . 15  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( N  <  3  ->  N  = 
2 ) )
4241imp 445 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  N  <  3 )  ->  N  =  2 )
4342olcd 408 . . . . . . . . . . . . 13  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  N  <  3 )  ->  ( N  =  1  \/  N  =  2 ) )
4443ex 450 . . . . . . . . . . . 12  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( N  <  3  ->  ( N  =  1  \/  N  =  2 ) ) )
4515, 44sylbir 225 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  N  =/=  1 )  -> 
( N  <  3  ->  ( N  =  1  \/  N  =  2 ) ) )
4645expcom 451 . . . . . . . . . 10  |-  ( N  =/=  1  ->  ( N  e.  NN  ->  ( N  <  3  -> 
( N  =  1  \/  N  =  2 ) ) ) )
4714, 46pm2.61ine 2877 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( N  <  3  ->  ( N  =  1  \/  N  =  2 ) ) )
4811, 47sylbir 225 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  1  <_  N )  -> 
( N  <  3  ->  ( N  =  1  \/  N  =  2 ) ) )
49483adant3 1081 . . . . . . 7  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  ( N  <  3  ->  ( N  =  1  \/  N  =  2 ) ) )
5010, 49sylbid 230 . . . . . 6  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  ( -.  N  =  3  ->  ( N  =  1  \/  N  =  2 ) ) )
5150impcom 446 . . . . 5  |-  ( ( -.  N  =  3  /\  ( N  e. 
NN0  /\  1  <_  N  /\  N  <_  3
) )  ->  ( N  =  1  \/  N  =  2 ) )
5251orcd 407 . . . 4  |-  ( ( -.  N  =  3  /\  ( N  e. 
NN0  /\  1  <_  N  /\  N  <_  3
) )  ->  (
( N  =  1  \/  N  =  2 )  \/  N  =  3 ) )
53 df-3or 1038 . . . 4  |-  ( ( N  =  1  \/  N  =  2  \/  N  =  3 )  <-> 
( ( N  =  1  \/  N  =  2 )  \/  N  =  3 ) )
5452, 53sylibr 224 . . 3  |-  ( ( -.  N  =  3  /\  ( N  e. 
NN0  /\  1  <_  N  /\  N  <_  3
) )  ->  ( N  =  1  \/  N  =  2  \/  N  =  3 ) )
5554ex 450 . 2  |-  ( -.  N  =  3  -> 
( ( N  e. 
NN0  /\  1  <_  N  /\  N  <_  3
)  ->  ( N  =  1  \/  N  =  2  \/  N  =  3 ) ) )
562, 55pm2.61i 176 1  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  ( N  =  1  \/  N  =  2  \/  N  =  3 ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    \/ w3o 1036    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   RRcr 9935   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075   NNcn 11020   2c2 11070   3c3 11071   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688
This theorem is referenced by:  hash1to3  13273
  Copyright terms: Public domain W3C validator