MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsinvlem Structured version   Visualization version   Unicode version

Theorem prdsinvlem 17524
Description: Characterization of inverses in a structure product. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
prdsinvlem.y  |-  Y  =  ( S X_s R )
prdsinvlem.b  |-  B  =  ( Base `  Y
)
prdsinvlem.p  |-  .+  =  ( +g  `  Y )
prdsinvlem.s  |-  ( ph  ->  S  e.  V )
prdsinvlem.i  |-  ( ph  ->  I  e.  W )
prdsinvlem.r  |-  ( ph  ->  R : I --> Grp )
prdsinvlem.f  |-  ( ph  ->  F  e.  B )
prdsinvlem.z  |-  .0.  =  ( 0g  o.  R
)
prdsinvlem.n  |-  N  =  ( y  e.  I  |->  ( ( invg `  ( R `  y
) ) `  ( F `  y )
) )
Assertion
Ref Expression
prdsinvlem  |-  ( ph  ->  ( N  e.  B  /\  ( N  .+  F
)  =  .0.  )
)
Distinct variable groups:    y, B    y, F    y, I    ph, y    y, R    y, S    y, V    y, W    y, Y
Allowed substitution hints:    .+ ( y)    N( y)    .0. ( y)

Proof of Theorem prdsinvlem
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 prdsinvlem.n . . 3  |-  N  =  ( y  e.  I  |->  ( ( invg `  ( R `  y
) ) `  ( F `  y )
) )
2 prdsinvlem.r . . . . . . 7  |-  ( ph  ->  R : I --> Grp )
32ffvelrnda 6359 . . . . . 6  |-  ( (
ph  /\  y  e.  I )  ->  ( R `  y )  e.  Grp )
4 prdsinvlem.y . . . . . . 7  |-  Y  =  ( S X_s R )
5 prdsinvlem.b . . . . . . 7  |-  B  =  ( Base `  Y
)
6 prdsinvlem.s . . . . . . . 8  |-  ( ph  ->  S  e.  V )
76adantr 481 . . . . . . 7  |-  ( (
ph  /\  y  e.  I )  ->  S  e.  V )
8 prdsinvlem.i . . . . . . . 8  |-  ( ph  ->  I  e.  W )
98adantr 481 . . . . . . 7  |-  ( (
ph  /\  y  e.  I )  ->  I  e.  W )
10 ffn 6045 . . . . . . . . 9  |-  ( R : I --> Grp  ->  R  Fn  I )
112, 10syl 17 . . . . . . . 8  |-  ( ph  ->  R  Fn  I )
1211adantr 481 . . . . . . 7  |-  ( (
ph  /\  y  e.  I )  ->  R  Fn  I )
13 prdsinvlem.f . . . . . . . 8  |-  ( ph  ->  F  e.  B )
1413adantr 481 . . . . . . 7  |-  ( (
ph  /\  y  e.  I )  ->  F  e.  B )
15 simpr 477 . . . . . . 7  |-  ( (
ph  /\  y  e.  I )  ->  y  e.  I )
164, 5, 7, 9, 12, 14, 15prdsbasprj 16132 . . . . . 6  |-  ( (
ph  /\  y  e.  I )  ->  ( F `  y )  e.  ( Base `  ( R `  y )
) )
17 eqid 2622 . . . . . . 7  |-  ( Base `  ( R `  y
) )  =  (
Base `  ( R `  y ) )
18 eqid 2622 . . . . . . 7  |-  ( invg `  ( R `
 y ) )  =  ( invg `  ( R `  y
) )
1917, 18grpinvcl 17467 . . . . . 6  |-  ( ( ( R `  y
)  e.  Grp  /\  ( F `  y )  e.  ( Base `  ( R `  y )
) )  ->  (
( invg `  ( R `  y ) ) `  ( F `
 y ) )  e.  ( Base `  ( R `  y )
) )
203, 16, 19syl2anc 693 . . . . 5  |-  ( (
ph  /\  y  e.  I )  ->  (
( invg `  ( R `  y ) ) `  ( F `
 y ) )  e.  ( Base `  ( R `  y )
) )
2120ralrimiva 2966 . . . 4  |-  ( ph  ->  A. y  e.  I 
( ( invg `  ( R `  y
) ) `  ( F `  y )
)  e.  ( Base `  ( R `  y
) ) )
224, 5, 6, 8, 11prdsbasmpt 16130 . . . 4  |-  ( ph  ->  ( ( y  e.  I  |->  ( ( invg `  ( R `
 y ) ) `
 ( F `  y ) ) )  e.  B  <->  A. y  e.  I  ( ( invg `  ( R `
 y ) ) `
 ( F `  y ) )  e.  ( Base `  ( R `  y )
) ) )
2321, 22mpbird 247 . . 3  |-  ( ph  ->  ( y  e.  I  |->  ( ( invg `  ( R `  y
) ) `  ( F `  y )
) )  e.  B
)
241, 23syl5eqel 2705 . 2  |-  ( ph  ->  N  e.  B )
252ffvelrnda 6359 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  ( R `  x )  e.  Grp )
266adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  S  e.  V )
278adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  I  e.  W )
2811adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  R  Fn  I )
2913adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  F  e.  B )
30 simpr 477 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  x  e.  I )
314, 5, 26, 27, 28, 29, 30prdsbasprj 16132 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  ( F `  x )  e.  ( Base `  ( R `  x )
) )
32 eqid 2622 . . . . . . 7  |-  ( Base `  ( R `  x
) )  =  (
Base `  ( R `  x ) )
33 eqid 2622 . . . . . . 7  |-  ( +g  `  ( R `  x
) )  =  ( +g  `  ( R `
 x ) )
34 eqid 2622 . . . . . . 7  |-  ( 0g
`  ( R `  x ) )  =  ( 0g `  ( R `  x )
)
35 eqid 2622 . . . . . . 7  |-  ( invg `  ( R `
 x ) )  =  ( invg `  ( R `  x
) )
3632, 33, 34, 35grplinv 17468 . . . . . 6  |-  ( ( ( R `  x
)  e.  Grp  /\  ( F `  x )  e.  ( Base `  ( R `  x )
) )  ->  (
( ( invg `  ( R `  x
) ) `  ( F `  x )
) ( +g  `  ( R `  x )
) ( F `  x ) )  =  ( 0g `  ( R `  x )
) )
3725, 31, 36syl2anc 693 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  (
( ( invg `  ( R `  x
) ) `  ( F `  x )
) ( +g  `  ( R `  x )
) ( F `  x ) )  =  ( 0g `  ( R `  x )
) )
38 fveq2 6191 . . . . . . . . . 10  |-  ( y  =  x  ->  ( R `  y )  =  ( R `  x ) )
3938fveq2d 6195 . . . . . . . . 9  |-  ( y  =  x  ->  ( invg `  ( R `
 y ) )  =  ( invg `  ( R `  x
) ) )
40 fveq2 6191 . . . . . . . . 9  |-  ( y  =  x  ->  ( F `  y )  =  ( F `  x ) )
4139, 40fveq12d 6197 . . . . . . . 8  |-  ( y  =  x  ->  (
( invg `  ( R `  y ) ) `  ( F `
 y ) )  =  ( ( invg `  ( R `
 x ) ) `
 ( F `  x ) ) )
42 fvex 6201 . . . . . . . 8  |-  ( ( invg `  ( R `  x )
) `  ( F `  x ) )  e. 
_V
4341, 1, 42fvmpt 6282 . . . . . . 7  |-  ( x  e.  I  ->  ( N `  x )  =  ( ( invg `  ( R `
 x ) ) `
 ( F `  x ) ) )
4443adantl 482 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  ( N `  x )  =  ( ( invg `  ( R `
 x ) ) `
 ( F `  x ) ) )
4544oveq1d 6665 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  (
( N `  x
) ( +g  `  ( R `  x )
) ( F `  x ) )  =  ( ( ( invg `  ( R `
 x ) ) `
 ( F `  x ) ) ( +g  `  ( R `
 x ) ) ( F `  x
) ) )
46 prdsinvlem.z . . . . . . 7  |-  .0.  =  ( 0g  o.  R
)
4746fveq1i 6192 . . . . . 6  |-  (  .0.  `  x )  =  ( ( 0g  o.  R
) `  x )
48 fvco2 6273 . . . . . . 7  |-  ( ( R  Fn  I  /\  x  e.  I )  ->  ( ( 0g  o.  R ) `  x
)  =  ( 0g
`  ( R `  x ) ) )
4911, 48sylan 488 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  (
( 0g  o.  R
) `  x )  =  ( 0g `  ( R `  x ) ) )
5047, 49syl5eq 2668 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  (  .0.  `  x )  =  ( 0g `  ( R `  x )
) )
5137, 45, 503eqtr4d 2666 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  (
( N `  x
) ( +g  `  ( R `  x )
) ( F `  x ) )  =  (  .0.  `  x
) )
5251mpteq2dva 4744 . . 3  |-  ( ph  ->  ( x  e.  I  |->  ( ( N `  x ) ( +g  `  ( R `  x
) ) ( F `
 x ) ) )  =  ( x  e.  I  |->  (  .0.  `  x ) ) )
53 prdsinvlem.p . . . 4  |-  .+  =  ( +g  `  Y )
544, 5, 6, 8, 11, 24, 13, 53prdsplusgval 16133 . . 3  |-  ( ph  ->  ( N  .+  F
)  =  ( x  e.  I  |->  ( ( N `  x ) ( +g  `  ( R `  x )
) ( F `  x ) ) ) )
55 fn0g 17262 . . . . . . 7  |-  0g  Fn  _V
5655a1i 11 . . . . . 6  |-  ( ph  ->  0g  Fn  _V )
57 ssv 3625 . . . . . . 7  |-  ran  R  C_ 
_V
5857a1i 11 . . . . . 6  |-  ( ph  ->  ran  R  C_  _V )
59 fnco 5999 . . . . . 6  |-  ( ( 0g  Fn  _V  /\  R  Fn  I  /\  ran  R  C_  _V )  ->  ( 0g  o.  R
)  Fn  I )
6056, 11, 58, 59syl3anc 1326 . . . . 5  |-  ( ph  ->  ( 0g  o.  R
)  Fn  I )
6146fneq1i 5985 . . . . 5  |-  (  .0. 
Fn  I  <->  ( 0g  o.  R )  Fn  I
)
6260, 61sylibr 224 . . . 4  |-  ( ph  ->  .0.  Fn  I )
63 dffn5 6241 . . . 4  |-  (  .0. 
Fn  I  <->  .0.  =  ( x  e.  I  |->  (  .0.  `  x
) ) )
6462, 63sylib 208 . . 3  |-  ( ph  ->  .0.  =  ( x  e.  I  |->  (  .0.  `  x ) ) )
6552, 54, 643eqtr4d 2666 . 2  |-  ( ph  ->  ( N  .+  F
)  =  .0.  )
6624, 65jca 554 1  |-  ( ph  ->  ( N  e.  B  /\  ( N  .+  F
)  =  .0.  )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    C_ wss 3574    |-> cmpt 4729   ran crn 5115    o. ccom 5118    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   0gc0g 16100   X_scprds 16106   Grpcgrp 17422   invgcminusg 17423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-prds 16108  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426
This theorem is referenced by:  prdsgrpd  17525  prdsinvgd  17526
  Copyright terms: Public domain W3C validator