MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pthdlem2lem Structured version   Visualization version   Unicode version

Theorem pthdlem2lem 26663
Description: Lemma for pthdlem2 26664. (Contributed by AV, 10-Feb-2021.)
Hypotheses
Ref Expression
pthd.p  |-  ( ph  ->  P  e. Word  _V )
pthd.r  |-  R  =  ( ( # `  P
)  -  1 )
pthd.s  |-  ( ph  ->  A. i  e.  ( 0..^ ( # `  P
) ) A. j  e.  ( 1..^ R ) ( i  =/=  j  ->  ( P `  i
)  =/=  ( P `
 j ) ) )
Assertion
Ref Expression
pthdlem2lem  |-  ( (
ph  /\  ( # `  P
)  e.  NN  /\  ( I  =  0  \/  I  =  R
) )  ->  ( P `  I )  e/  ( P " (
1..^ R ) ) )
Distinct variable groups:    P, i,
j    R, i, j    ph, i,
j    i, I, j

Proof of Theorem pthdlem2lem
StepHypRef Expression
1 pthd.s . . . . . 6  |-  ( ph  ->  A. i  e.  ( 0..^ ( # `  P
) ) A. j  e.  ( 1..^ R ) ( i  =/=  j  ->  ( P `  i
)  =/=  ( P `
 j ) ) )
213ad2ant1 1082 . . . . 5  |-  ( (
ph  /\  ( # `  P
)  e.  NN  /\  ( I  =  0  \/  I  =  R
) )  ->  A. i  e.  ( 0..^ ( # `  P ) ) A. j  e.  ( 1..^ R ) ( i  =/=  j  ->  ( P `  i )  =/=  ( P `  j
) ) )
3 ralcom 3098 . . . . . 6  |-  ( A. i  e.  ( 0..^ ( # `  P
) ) A. j  e.  ( 1..^ R ) ( i  =/=  j  ->  ( P `  i
)  =/=  ( P `
 j ) )  <->  A. j  e.  (
1..^ R ) A. i  e.  ( 0..^ ( # `  P
) ) ( i  =/=  j  ->  ( P `  i )  =/=  ( P `  j
) ) )
4 elfzo1 12517 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  ( 1..^ R )  <->  ( j  e.  NN  /\  R  e.  NN  /\  j  < 
R ) )
5 nnne0 11053 . . . . . . . . . . . . . . . . . . 19  |-  ( j  e.  NN  ->  j  =/=  0 )
65necomd 2849 . . . . . . . . . . . . . . . . . 18  |-  ( j  e.  NN  ->  0  =/=  j )
763ad2ant1 1082 . . . . . . . . . . . . . . . . 17  |-  ( ( j  e.  NN  /\  R  e.  NN  /\  j  <  R )  ->  0  =/=  j )
84, 7sylbi 207 . . . . . . . . . . . . . . . 16  |-  ( j  e.  ( 1..^ R )  ->  0  =/=  j )
98adantl 482 . . . . . . . . . . . . . . 15  |-  ( ( ( # `  P
)  e.  NN  /\  j  e.  ( 1..^ R ) )  -> 
0  =/=  j )
10 neeq1 2856 . . . . . . . . . . . . . . 15  |-  ( I  =  0  ->  (
I  =/=  j  <->  0  =/=  j ) )
119, 10syl5ibr 236 . . . . . . . . . . . . . 14  |-  ( I  =  0  ->  (
( ( # `  P
)  e.  NN  /\  j  e.  ( 1..^ R ) )  ->  I  =/=  j ) )
1211expd 452 . . . . . . . . . . . . 13  |-  ( I  =  0  ->  (
( # `  P )  e.  NN  ->  (
j  e.  ( 1..^ R )  ->  I  =/=  j ) ) )
13 nnre 11027 . . . . . . . . . . . . . . . . . . . . 21  |-  ( j  e.  NN  ->  j  e.  RR )
1413adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( j  e.  NN  /\  R  e.  NN )  ->  j  e.  RR )
15 nnre 11027 . . . . . . . . . . . . . . . . . . . . 21  |-  ( R  e.  NN  ->  R  e.  RR )
1615adantl 482 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( j  e.  NN  /\  R  e.  NN )  ->  R  e.  RR )
1714, 16ltlend 10182 . . . . . . . . . . . . . . . . . . 19  |-  ( ( j  e.  NN  /\  R  e.  NN )  ->  ( j  <  R  <->  ( j  <_  R  /\  R  =/=  j ) ) )
18 simpr 477 . . . . . . . . . . . . . . . . . . 19  |-  ( ( j  <_  R  /\  R  =/=  j )  ->  R  =/=  j )
1917, 18syl6bi 243 . . . . . . . . . . . . . . . . . 18  |-  ( ( j  e.  NN  /\  R  e.  NN )  ->  ( j  <  R  ->  R  =/=  j ) )
20193impia 1261 . . . . . . . . . . . . . . . . 17  |-  ( ( j  e.  NN  /\  R  e.  NN  /\  j  <  R )  ->  R  =/=  j )
214, 20sylbi 207 . . . . . . . . . . . . . . . 16  |-  ( j  e.  ( 1..^ R )  ->  R  =/=  j )
2221adantl 482 . . . . . . . . . . . . . . 15  |-  ( ( ( # `  P
)  e.  NN  /\  j  e.  ( 1..^ R ) )  ->  R  =/=  j )
23 neeq1 2856 . . . . . . . . . . . . . . 15  |-  ( I  =  R  ->  (
I  =/=  j  <->  R  =/=  j ) )
2422, 23syl5ibr 236 . . . . . . . . . . . . . 14  |-  ( I  =  R  ->  (
( ( # `  P
)  e.  NN  /\  j  e.  ( 1..^ R ) )  ->  I  =/=  j ) )
2524expd 452 . . . . . . . . . . . . 13  |-  ( I  =  R  ->  (
( # `  P )  e.  NN  ->  (
j  e.  ( 1..^ R )  ->  I  =/=  j ) ) )
2612, 25jaoi 394 . . . . . . . . . . . 12  |-  ( ( I  =  0  \/  I  =  R )  ->  ( ( # `  P )  e.  NN  ->  ( j  e.  ( 1..^ R )  ->  I  =/=  j ) ) )
2726impcom 446 . . . . . . . . . . 11  |-  ( ( ( # `  P
)  e.  NN  /\  ( I  =  0  \/  I  =  R
) )  ->  (
j  e.  ( 1..^ R )  ->  I  =/=  j ) )
28273adant1 1079 . . . . . . . . . 10  |-  ( (
ph  /\  ( # `  P
)  e.  NN  /\  ( I  =  0  \/  I  =  R
) )  ->  (
j  e.  ( 1..^ R )  ->  I  =/=  j ) )
2928imp 445 . . . . . . . . 9  |-  ( ( ( ph  /\  ( # `
 P )  e.  NN  /\  ( I  =  0  \/  I  =  R ) )  /\  j  e.  ( 1..^ R ) )  ->  I  =/=  j )
30 lbfzo0 12507 . . . . . . . . . . . . . . . 16  |-  ( 0  e.  ( 0..^ (
# `  P )
)  <->  ( # `  P
)  e.  NN )
3130biimpri 218 . . . . . . . . . . . . . . 15  |-  ( (
# `  P )  e.  NN  ->  0  e.  ( 0..^ ( # `  P
) ) )
32 eleq1 2689 . . . . . . . . . . . . . . 15  |-  ( I  =  0  ->  (
I  e.  ( 0..^ ( # `  P
) )  <->  0  e.  ( 0..^ ( # `  P
) ) ) )
3331, 32syl5ibr 236 . . . . . . . . . . . . . 14  |-  ( I  =  0  ->  (
( # `  P )  e.  NN  ->  I  e.  ( 0..^ ( # `  P ) ) ) )
34 pthd.r . . . . . . . . . . . . . . . 16  |-  R  =  ( ( # `  P
)  -  1 )
35 fzo0end 12560 . . . . . . . . . . . . . . . 16  |-  ( (
# `  P )  e.  NN  ->  ( ( # `
 P )  - 
1 )  e.  ( 0..^ ( # `  P
) ) )
3634, 35syl5eqel 2705 . . . . . . . . . . . . . . 15  |-  ( (
# `  P )  e.  NN  ->  R  e.  ( 0..^ ( # `  P
) ) )
37 eleq1 2689 . . . . . . . . . . . . . . 15  |-  ( I  =  R  ->  (
I  e.  ( 0..^ ( # `  P
) )  <->  R  e.  ( 0..^ ( # `  P
) ) ) )
3836, 37syl5ibr 236 . . . . . . . . . . . . . 14  |-  ( I  =  R  ->  (
( # `  P )  e.  NN  ->  I  e.  ( 0..^ ( # `  P ) ) ) )
3933, 38jaoi 394 . . . . . . . . . . . . 13  |-  ( ( I  =  0  \/  I  =  R )  ->  ( ( # `  P )  e.  NN  ->  I  e.  ( 0..^ ( # `  P
) ) ) )
4039impcom 446 . . . . . . . . . . . 12  |-  ( ( ( # `  P
)  e.  NN  /\  ( I  =  0  \/  I  =  R
) )  ->  I  e.  ( 0..^ ( # `  P ) ) )
41403adant1 1079 . . . . . . . . . . 11  |-  ( (
ph  /\  ( # `  P
)  e.  NN  /\  ( I  =  0  \/  I  =  R
) )  ->  I  e.  ( 0..^ ( # `  P ) ) )
4241adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( # `
 P )  e.  NN  /\  ( I  =  0  \/  I  =  R ) )  /\  j  e.  ( 1..^ R ) )  ->  I  e.  ( 0..^ ( # `  P
) ) )
43 neeq1 2856 . . . . . . . . . . . 12  |-  ( i  =  I  ->  (
i  =/=  j  <->  I  =/=  j ) )
44 fveq2 6191 . . . . . . . . . . . . 13  |-  ( i  =  I  ->  ( P `  i )  =  ( P `  I ) )
4544neeq1d 2853 . . . . . . . . . . . 12  |-  ( i  =  I  ->  (
( P `  i
)  =/=  ( P `
 j )  <->  ( P `  I )  =/=  ( P `  j )
) )
4643, 45imbi12d 334 . . . . . . . . . . 11  |-  ( i  =  I  ->  (
( i  =/=  j  ->  ( P `  i
)  =/=  ( P `
 j ) )  <-> 
( I  =/=  j  ->  ( P `  I
)  =/=  ( P `
 j ) ) ) )
4746rspcv 3305 . . . . . . . . . 10  |-  ( I  e.  ( 0..^ (
# `  P )
)  ->  ( A. i  e.  ( 0..^ ( # `  P
) ) ( i  =/=  j  ->  ( P `  i )  =/=  ( P `  j
) )  ->  (
I  =/=  j  -> 
( P `  I
)  =/=  ( P `
 j ) ) ) )
4842, 47syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  ( # `
 P )  e.  NN  /\  ( I  =  0  \/  I  =  R ) )  /\  j  e.  ( 1..^ R ) )  -> 
( A. i  e.  ( 0..^ ( # `  P ) ) ( i  =/=  j  -> 
( P `  i
)  =/=  ( P `
 j ) )  ->  ( I  =/=  j  ->  ( P `  I )  =/=  ( P `  j )
) ) )
4929, 48mpid 44 . . . . . . . 8  |-  ( ( ( ph  /\  ( # `
 P )  e.  NN  /\  ( I  =  0  \/  I  =  R ) )  /\  j  e.  ( 1..^ R ) )  -> 
( A. i  e.  ( 0..^ ( # `  P ) ) ( i  =/=  j  -> 
( P `  i
)  =/=  ( P `
 j ) )  ->  ( P `  I )  =/=  ( P `  j )
) )
50 nesym 2850 . . . . . . . 8  |-  ( ( P `  I )  =/=  ( P `  j )  <->  -.  ( P `  j )  =  ( P `  I ) )
5149, 50syl6ib 241 . . . . . . 7  |-  ( ( ( ph  /\  ( # `
 P )  e.  NN  /\  ( I  =  0  \/  I  =  R ) )  /\  j  e.  ( 1..^ R ) )  -> 
( A. i  e.  ( 0..^ ( # `  P ) ) ( i  =/=  j  -> 
( P `  i
)  =/=  ( P `
 j ) )  ->  -.  ( P `  j )  =  ( P `  I ) ) )
5251ralimdva 2962 . . . . . 6  |-  ( (
ph  /\  ( # `  P
)  e.  NN  /\  ( I  =  0  \/  I  =  R
) )  ->  ( A. j  e.  (
1..^ R ) A. i  e.  ( 0..^ ( # `  P
) ) ( i  =/=  j  ->  ( P `  i )  =/=  ( P `  j
) )  ->  A. j  e.  ( 1..^ R )  -.  ( P `  j )  =  ( P `  I ) ) )
533, 52syl5bi 232 . . . . 5  |-  ( (
ph  /\  ( # `  P
)  e.  NN  /\  ( I  =  0  \/  I  =  R
) )  ->  ( A. i  e.  (
0..^ ( # `  P
) ) A. j  e.  ( 1..^ R ) ( i  =/=  j  ->  ( P `  i
)  =/=  ( P `
 j ) )  ->  A. j  e.  ( 1..^ R )  -.  ( P `  j
)  =  ( P `
 I ) ) )
542, 53mpd 15 . . . 4  |-  ( (
ph  /\  ( # `  P
)  e.  NN  /\  ( I  =  0  \/  I  =  R
) )  ->  A. j  e.  ( 1..^ R )  -.  ( P `  j )  =  ( P `  I ) )
55 ralnex 2992 . . . 4  |-  ( A. j  e.  ( 1..^ R )  -.  ( P `  j )  =  ( P `  I )  <->  -.  E. j  e.  ( 1..^ R ) ( P `  j
)  =  ( P `
 I ) )
5654, 55sylib 208 . . 3  |-  ( (
ph  /\  ( # `  P
)  e.  NN  /\  ( I  =  0  \/  I  =  R
) )  ->  -.  E. j  e.  ( 1..^ R ) ( P `
 j )  =  ( P `  I
) )
57 pthd.p . . . . . 6  |-  ( ph  ->  P  e. Word  _V )
58 wrdf 13310 . . . . . 6  |-  ( P  e. Word  _V  ->  P :
( 0..^ ( # `  P ) ) --> _V )
59 ffun 6048 . . . . . 6  |-  ( P : ( 0..^ (
# `  P )
) --> _V  ->  Fun  P
)
6057, 58, 593syl 18 . . . . 5  |-  ( ph  ->  Fun  P )
61603ad2ant1 1082 . . . 4  |-  ( (
ph  /\  ( # `  P
)  e.  NN  /\  ( I  =  0  \/  I  =  R
) )  ->  Fun  P )
62 fvelima 6248 . . . . 5  |-  ( ( Fun  P  /\  ( P `  I )  e.  ( P " (
1..^ R ) ) )  ->  E. j  e.  ( 1..^ R ) ( P `  j
)  =  ( P `
 I ) )
6362ex 450 . . . 4  |-  ( Fun 
P  ->  ( ( P `  I )  e.  ( P " (
1..^ R ) )  ->  E. j  e.  ( 1..^ R ) ( P `  j )  =  ( P `  I ) ) )
6461, 63syl 17 . . 3  |-  ( (
ph  /\  ( # `  P
)  e.  NN  /\  ( I  =  0  \/  I  =  R
) )  ->  (
( P `  I
)  e.  ( P
" ( 1..^ R ) )  ->  E. j  e.  ( 1..^ R ) ( P `  j
)  =  ( P `
 I ) ) )
6556, 64mtod 189 . 2  |-  ( (
ph  /\  ( # `  P
)  e.  NN  /\  ( I  =  0  \/  I  =  R
) )  ->  -.  ( P `  I )  e.  ( P "
( 1..^ R ) ) )
66 df-nel 2898 . 2  |-  ( ( P `  I )  e/  ( P "
( 1..^ R ) )  <->  -.  ( P `  I )  e.  ( P " ( 1..^ R ) ) )
6765, 66sylibr 224 1  |-  ( (
ph  /\  ( # `  P
)  e.  NN  /\  ( I  =  0  \/  I  =  R
) )  ->  ( P `  I )  e/  ( P " (
1..^ R ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794    e/ wnel 2897   A.wral 2912   E.wrex 2913   _Vcvv 3200   class class class wbr 4653   "cima 5117   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020  ..^cfzo 12465   #chash 13117  Word cword 13291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299
This theorem is referenced by:  pthdlem2  26664
  Copyright terms: Public domain W3C validator