MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pythagtriplem1 Structured version   Visualization version   Unicode version

Theorem pythagtriplem1 15521
Description: Lemma for pythagtrip 15539. Prove a weaker version of one direction of the theorem. (Contributed by Scott Fenton, 28-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
pythagtriplem1  |-  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  ->  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 ) )
Distinct variable groups:    A, n, m, k    B, n, m, k    C, n, m, k

Proof of Theorem pythagtriplem1
StepHypRef Expression
1 nncn 11028 . . . . . 6  |-  ( n  e.  NN  ->  n  e.  CC )
2 nncn 11028 . . . . . 6  |-  ( m  e.  NN  ->  m  e.  CC )
3 nncn 11028 . . . . . 6  |-  ( k  e.  NN  ->  k  e.  CC )
4 sqcl 12925 . . . . . . . . . . . . . . 15  |-  ( m  e.  CC  ->  (
m ^ 2 )  e.  CC )
54adantl 482 . . . . . . . . . . . . . 14  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( m ^ 2 )  e.  CC )
65sqcld 13006 . . . . . . . . . . . . 13  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( m ^
2 ) ^ 2 )  e.  CC )
7 2cn 11091 . . . . . . . . . . . . . 14  |-  2  e.  CC
8 sqcl 12925 . . . . . . . . . . . . . . 15  |-  ( n  e.  CC  ->  (
n ^ 2 )  e.  CC )
9 mulcl 10020 . . . . . . . . . . . . . . 15  |-  ( ( ( m ^ 2 )  e.  CC  /\  ( n ^ 2 )  e.  CC )  ->  ( ( m ^ 2 )  x.  ( n ^ 2 ) )  e.  CC )
104, 8, 9syl2anr 495 . . . . . . . . . . . . . 14  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( m ^
2 )  x.  (
n ^ 2 ) )  e.  CC )
11 mulcl 10020 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  CC  /\  ( ( m ^
2 )  x.  (
n ^ 2 ) )  e.  CC )  ->  ( 2  x.  ( ( m ^
2 )  x.  (
n ^ 2 ) ) )  e.  CC )
127, 10, 11sylancr 695 . . . . . . . . . . . . 13  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( 2  x.  (
( m ^ 2 )  x.  ( n ^ 2 ) ) )  e.  CC )
136, 12subcld 10392 . . . . . . . . . . . 12  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( ( m ^ 2 ) ^
2 )  -  (
2  x.  ( ( m ^ 2 )  x.  ( n ^
2 ) ) ) )  e.  CC )
148adantr 481 . . . . . . . . . . . . 13  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( n ^ 2 )  e.  CC )
1514sqcld 13006 . . . . . . . . . . . 12  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( n ^
2 ) ^ 2 )  e.  CC )
16 mulcl 10020 . . . . . . . . . . . . . . 15  |-  ( ( m  e.  CC  /\  n  e.  CC )  ->  ( m  x.  n
)  e.  CC )
1716ancoms 469 . . . . . . . . . . . . . 14  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( m  x.  n
)  e.  CC )
18 mulcl 10020 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  CC  /\  ( m  x.  n
)  e.  CC )  ->  ( 2  x.  ( m  x.  n
) )  e.  CC )
197, 17, 18sylancr 695 . . . . . . . . . . . . 13  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( 2  x.  (
m  x.  n ) )  e.  CC )
2019sqcld 13006 . . . . . . . . . . . 12  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( 2  x.  ( m  x.  n
) ) ^ 2 )  e.  CC )
2113, 15, 20add32d 10263 . . . . . . . . . . 11  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( ( ( ( m ^ 2 ) ^ 2 )  -  ( 2  x.  ( ( m ^
2 )  x.  (
n ^ 2 ) ) ) )  +  ( ( n ^
2 ) ^ 2 ) )  +  ( ( 2  x.  (
m  x.  n ) ) ^ 2 ) )  =  ( ( ( ( ( m ^ 2 ) ^
2 )  -  (
2  x.  ( ( m ^ 2 )  x.  ( n ^
2 ) ) ) )  +  ( ( 2  x.  ( m  x.  n ) ) ^ 2 ) )  +  ( ( n ^ 2 ) ^
2 ) ) )
226, 12, 20subadd23d 10414 . . . . . . . . . . . . 13  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( ( ( m ^ 2 ) ^ 2 )  -  ( 2  x.  (
( m ^ 2 )  x.  ( n ^ 2 ) ) ) )  +  ( ( 2  x.  (
m  x.  n ) ) ^ 2 ) )  =  ( ( ( m ^ 2 ) ^ 2 )  +  ( ( ( 2  x.  ( m  x.  n ) ) ^ 2 )  -  ( 2  x.  (
( m ^ 2 )  x.  ( n ^ 2 ) ) ) ) ) )
23 sqmul 12926 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2  e.  CC  /\  ( m  x.  n
)  e.  CC )  ->  ( ( 2  x.  ( m  x.  n ) ) ^
2 )  =  ( ( 2 ^ 2 )  x.  ( ( m  x.  n ) ^ 2 ) ) )
247, 17, 23sylancr 695 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( 2  x.  ( m  x.  n
) ) ^ 2 )  =  ( ( 2 ^ 2 )  x.  ( ( m  x.  n ) ^
2 ) ) )
25 sq2 12960 . . . . . . . . . . . . . . . . . . 19  |-  ( 2 ^ 2 )  =  4
2625a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( 2 ^ 2 )  =  4 )
27 sqmul 12926 . . . . . . . . . . . . . . . . . . 19  |-  ( ( m  e.  CC  /\  n  e.  CC )  ->  ( ( m  x.  n ) ^ 2 )  =  ( ( m ^ 2 )  x.  ( n ^
2 ) ) )
2827ancoms 469 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( m  x.  n ) ^ 2 )  =  ( ( m ^ 2 )  x.  ( n ^
2 ) ) )
2926, 28oveq12d 6668 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( 2 ^ 2 )  x.  (
( m  x.  n
) ^ 2 ) )  =  ( 4  x.  ( ( m ^ 2 )  x.  ( n ^ 2 ) ) ) )
3024, 29eqtrd 2656 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( 2  x.  ( m  x.  n
) ) ^ 2 )  =  ( 4  x.  ( ( m ^ 2 )  x.  ( n ^ 2 ) ) ) )
3130oveq1d 6665 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( ( 2  x.  ( m  x.  n ) ) ^
2 )  -  (
2  x.  ( ( m ^ 2 )  x.  ( n ^
2 ) ) ) )  =  ( ( 4  x.  ( ( m ^ 2 )  x.  ( n ^
2 ) ) )  -  ( 2  x.  ( ( m ^
2 )  x.  (
n ^ 2 ) ) ) ) )
32 4cn 11098 . . . . . . . . . . . . . . . . . 18  |-  4  e.  CC
33 2p2e4 11144 . . . . . . . . . . . . . . . . . 18  |-  ( 2  +  2 )  =  4
3432, 7, 7, 33subaddrii 10370 . . . . . . . . . . . . . . . . 17  |-  ( 4  -  2 )  =  2
3534oveq1i 6660 . . . . . . . . . . . . . . . 16  |-  ( ( 4  -  2 )  x.  ( ( m ^ 2 )  x.  ( n ^ 2 ) ) )  =  ( 2  x.  (
( m ^ 2 )  x.  ( n ^ 2 ) ) )
36 subdir 10464 . . . . . . . . . . . . . . . . . 18  |-  ( ( 4  e.  CC  /\  2  e.  CC  /\  (
( m ^ 2 )  x.  ( n ^ 2 ) )  e.  CC )  -> 
( ( 4  -  2 )  x.  (
( m ^ 2 )  x.  ( n ^ 2 ) ) )  =  ( ( 4  x.  ( ( m ^ 2 )  x.  ( n ^
2 ) ) )  -  ( 2  x.  ( ( m ^
2 )  x.  (
n ^ 2 ) ) ) ) )
3732, 7, 36mp3an12 1414 . . . . . . . . . . . . . . . . 17  |-  ( ( ( m ^ 2 )  x.  ( n ^ 2 ) )  e.  CC  ->  (
( 4  -  2 )  x.  ( ( m ^ 2 )  x.  ( n ^
2 ) ) )  =  ( ( 4  x.  ( ( m ^ 2 )  x.  ( n ^ 2 ) ) )  -  ( 2  x.  (
( m ^ 2 )  x.  ( n ^ 2 ) ) ) ) )
3810, 37syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( 4  -  2 )  x.  (
( m ^ 2 )  x.  ( n ^ 2 ) ) )  =  ( ( 4  x.  ( ( m ^ 2 )  x.  ( n ^
2 ) ) )  -  ( 2  x.  ( ( m ^
2 )  x.  (
n ^ 2 ) ) ) ) )
3935, 38syl5reqr 2671 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( 4  x.  ( ( m ^
2 )  x.  (
n ^ 2 ) ) )  -  (
2  x.  ( ( m ^ 2 )  x.  ( n ^
2 ) ) ) )  =  ( 2  x.  ( ( m ^ 2 )  x.  ( n ^ 2 ) ) ) )
4031, 39eqtrd 2656 . . . . . . . . . . . . . 14  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( ( 2  x.  ( m  x.  n ) ) ^
2 )  -  (
2  x.  ( ( m ^ 2 )  x.  ( n ^
2 ) ) ) )  =  ( 2  x.  ( ( m ^ 2 )  x.  ( n ^ 2 ) ) ) )
4140oveq2d 6666 . . . . . . . . . . . . 13  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( ( m ^ 2 ) ^
2 )  +  ( ( ( 2  x.  ( m  x.  n
) ) ^ 2 )  -  ( 2  x.  ( ( m ^ 2 )  x.  ( n ^ 2 ) ) ) ) )  =  ( ( ( m ^ 2 ) ^ 2 )  +  ( 2  x.  ( ( m ^
2 )  x.  (
n ^ 2 ) ) ) ) )
4222, 41eqtrd 2656 . . . . . . . . . . . 12  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( ( ( m ^ 2 ) ^ 2 )  -  ( 2  x.  (
( m ^ 2 )  x.  ( n ^ 2 ) ) ) )  +  ( ( 2  x.  (
m  x.  n ) ) ^ 2 ) )  =  ( ( ( m ^ 2 ) ^ 2 )  +  ( 2  x.  ( ( m ^
2 )  x.  (
n ^ 2 ) ) ) ) )
4342oveq1d 6665 . . . . . . . . . . 11  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( ( ( ( m ^ 2 ) ^ 2 )  -  ( 2  x.  ( ( m ^
2 )  x.  (
n ^ 2 ) ) ) )  +  ( ( 2  x.  ( m  x.  n
) ) ^ 2 ) )  +  ( ( n ^ 2 ) ^ 2 ) )  =  ( ( ( ( m ^
2 ) ^ 2 )  +  ( 2  x.  ( ( m ^ 2 )  x.  ( n ^ 2 ) ) ) )  +  ( ( n ^ 2 ) ^
2 ) ) )
4421, 43eqtrd 2656 . . . . . . . . . 10  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( ( ( ( m ^ 2 ) ^ 2 )  -  ( 2  x.  ( ( m ^
2 )  x.  (
n ^ 2 ) ) ) )  +  ( ( n ^
2 ) ^ 2 ) )  +  ( ( 2  x.  (
m  x.  n ) ) ^ 2 ) )  =  ( ( ( ( m ^
2 ) ^ 2 )  +  ( 2  x.  ( ( m ^ 2 )  x.  ( n ^ 2 ) ) ) )  +  ( ( n ^ 2 ) ^
2 ) ) )
45 binom2sub 12981 . . . . . . . . . . . 12  |-  ( ( ( m ^ 2 )  e.  CC  /\  ( n ^ 2 )  e.  CC )  ->  ( ( ( m ^ 2 )  -  ( n ^
2 ) ) ^
2 )  =  ( ( ( ( m ^ 2 ) ^
2 )  -  (
2  x.  ( ( m ^ 2 )  x.  ( n ^
2 ) ) ) )  +  ( ( n ^ 2 ) ^ 2 ) ) )
464, 8, 45syl2anr 495 . . . . . . . . . . 11  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( ( m ^ 2 )  -  ( n ^ 2 ) ) ^ 2 )  =  ( ( ( ( m ^
2 ) ^ 2 )  -  ( 2  x.  ( ( m ^ 2 )  x.  ( n ^ 2 ) ) ) )  +  ( ( n ^ 2 ) ^
2 ) ) )
4746oveq1d 6665 . . . . . . . . . 10  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( ( ( m ^ 2 )  -  ( n ^
2 ) ) ^
2 )  +  ( ( 2  x.  (
m  x.  n ) ) ^ 2 ) )  =  ( ( ( ( ( m ^ 2 ) ^
2 )  -  (
2  x.  ( ( m ^ 2 )  x.  ( n ^
2 ) ) ) )  +  ( ( n ^ 2 ) ^ 2 ) )  +  ( ( 2  x.  ( m  x.  n ) ) ^
2 ) ) )
48 binom2 12979 . . . . . . . . . . 11  |-  ( ( ( m ^ 2 )  e.  CC  /\  ( n ^ 2 )  e.  CC )  ->  ( ( ( m ^ 2 )  +  ( n ^
2 ) ) ^
2 )  =  ( ( ( ( m ^ 2 ) ^
2 )  +  ( 2  x.  ( ( m ^ 2 )  x.  ( n ^
2 ) ) ) )  +  ( ( n ^ 2 ) ^ 2 ) ) )
494, 8, 48syl2anr 495 . . . . . . . . . 10  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( ( m ^ 2 )  +  ( n ^ 2 ) ) ^ 2 )  =  ( ( ( ( m ^
2 ) ^ 2 )  +  ( 2  x.  ( ( m ^ 2 )  x.  ( n ^ 2 ) ) ) )  +  ( ( n ^ 2 ) ^
2 ) ) )
5044, 47, 493eqtr4d 2666 . . . . . . . . 9  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( ( ( ( m ^ 2 )  -  ( n ^
2 ) ) ^
2 )  +  ( ( 2  x.  (
m  x.  n ) ) ^ 2 ) )  =  ( ( ( m ^ 2 )  +  ( n ^ 2 ) ) ^ 2 ) )
51503adant3 1081 . . . . . . . 8  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
( ( ( m ^ 2 )  -  ( n ^ 2 ) ) ^ 2 )  +  ( ( 2  x.  ( m  x.  n ) ) ^ 2 ) )  =  ( ( ( m ^ 2 )  +  ( n ^
2 ) ) ^
2 ) )
5251oveq2d 6666 . . . . . . 7  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
( k ^ 2 )  x.  ( ( ( ( m ^
2 )  -  (
n ^ 2 ) ) ^ 2 )  +  ( ( 2  x.  ( m  x.  n ) ) ^
2 ) ) )  =  ( ( k ^ 2 )  x.  ( ( ( m ^ 2 )  +  ( n ^ 2 ) ) ^ 2 ) ) )
53 simp3 1063 . . . . . . . . . 10  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  k  e.  CC )
5443ad2ant2 1083 . . . . . . . . . . 11  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
m ^ 2 )  e.  CC )
5583ad2ant1 1082 . . . . . . . . . . 11  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
n ^ 2 )  e.  CC )
5654, 55subcld 10392 . . . . . . . . . 10  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
( m ^ 2 )  -  ( n ^ 2 ) )  e.  CC )
5753, 56sqmuld 13020 . . . . . . . . 9  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) ) ^ 2 )  =  ( ( k ^ 2 )  x.  ( ( ( m ^ 2 )  -  ( n ^ 2 ) ) ^ 2 ) ) )
58173adant3 1081 . . . . . . . . . . 11  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
m  x.  n )  e.  CC )
597, 58, 18sylancr 695 . . . . . . . . . 10  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
2  x.  ( m  x.  n ) )  e.  CC )
6053, 59sqmuld 13020 . . . . . . . . 9  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
( k  x.  (
2  x.  ( m  x.  n ) ) ) ^ 2 )  =  ( ( k ^ 2 )  x.  ( ( 2  x.  ( m  x.  n
) ) ^ 2 ) ) )
6157, 60oveq12d 6668 . . . . . . . 8  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
( ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) ) ^ 2 )  +  ( ( k  x.  ( 2  x.  ( m  x.  n ) ) ) ^ 2 ) )  =  ( ( ( k ^ 2 )  x.  ( ( ( m ^ 2 )  -  ( n ^
2 ) ) ^
2 ) )  +  ( ( k ^
2 )  x.  (
( 2  x.  (
m  x.  n ) ) ^ 2 ) ) ) )
62 sqcl 12925 . . . . . . . . . 10  |-  ( k  e.  CC  ->  (
k ^ 2 )  e.  CC )
63623ad2ant3 1084 . . . . . . . . 9  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
k ^ 2 )  e.  CC )
6456sqcld 13006 . . . . . . . . 9  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
( ( m ^
2 )  -  (
n ^ 2 ) ) ^ 2 )  e.  CC )
6559sqcld 13006 . . . . . . . . 9  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
( 2  x.  (
m  x.  n ) ) ^ 2 )  e.  CC )
6663, 64, 65adddid 10064 . . . . . . . 8  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
( k ^ 2 )  x.  ( ( ( ( m ^
2 )  -  (
n ^ 2 ) ) ^ 2 )  +  ( ( 2  x.  ( m  x.  n ) ) ^
2 ) ) )  =  ( ( ( k ^ 2 )  x.  ( ( ( m ^ 2 )  -  ( n ^
2 ) ) ^
2 ) )  +  ( ( k ^
2 )  x.  (
( 2  x.  (
m  x.  n ) ) ^ 2 ) ) ) )
6761, 66eqtr4d 2659 . . . . . . 7  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
( ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) ) ^ 2 )  +  ( ( k  x.  ( 2  x.  ( m  x.  n ) ) ) ^ 2 ) )  =  ( ( k ^ 2 )  x.  ( ( ( ( m ^ 2 )  -  ( n ^
2 ) ) ^
2 )  +  ( ( 2  x.  (
m  x.  n ) ) ^ 2 ) ) ) )
6854, 55addcld 10059 . . . . . . . 8  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
( m ^ 2 )  +  ( n ^ 2 ) )  e.  CC )
6953, 68sqmuld 13020 . . . . . . 7  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ^ 2 )  =  ( ( k ^ 2 )  x.  ( ( ( m ^ 2 )  +  ( n ^ 2 ) ) ^ 2 ) ) )
7052, 67, 693eqtr4d 2666 . . . . . 6  |-  ( ( n  e.  CC  /\  m  e.  CC  /\  k  e.  CC )  ->  (
( ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) ) ^ 2 )  +  ( ( k  x.  ( 2  x.  ( m  x.  n ) ) ) ^ 2 ) )  =  ( ( k  x.  ( ( m ^ 2 )  +  ( n ^ 2 ) ) ) ^
2 ) )
711, 2, 3, 70syl3an 1368 . . . . 5  |-  ( ( n  e.  NN  /\  m  e.  NN  /\  k  e.  NN )  ->  (
( ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) ) ^ 2 )  +  ( ( k  x.  ( 2  x.  ( m  x.  n ) ) ) ^ 2 ) )  =  ( ( k  x.  ( ( m ^ 2 )  +  ( n ^ 2 ) ) ) ^
2 ) )
72 oveq1 6657 . . . . . . . 8  |-  ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  ->  ( A ^ 2 )  =  ( ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) ) ^ 2 ) )
73 oveq1 6657 . . . . . . . 8  |-  ( B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  ->  ( B ^ 2 )  =  ( ( k  x.  ( 2  x.  (
m  x.  n ) ) ) ^ 2 ) )
7472, 73oveqan12d 6669 . . . . . . 7  |-  ( ( A  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) ) )  -> 
( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( ( ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) ) ^ 2 )  +  ( ( k  x.  ( 2  x.  ( m  x.  n
) ) ) ^
2 ) ) )
75743adant3 1081 . . . . . 6  |-  ( ( A  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  -> 
( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( ( ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) ) ^ 2 )  +  ( ( k  x.  ( 2  x.  ( m  x.  n
) ) ) ^
2 ) ) )
76 oveq1 6657 . . . . . . 7  |-  ( C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) )  ->  ( C ^ 2 )  =  ( ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ^ 2 ) )
77763ad2ant3 1084 . . . . . 6  |-  ( ( A  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  -> 
( C ^ 2 )  =  ( ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ^ 2 ) )
7875, 77eqeq12d 2637 . . . . 5  |-  ( ( A  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  -> 
( ( ( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  <-> 
( ( ( k  x.  ( ( m ^ 2 )  -  ( n ^ 2 ) ) ) ^
2 )  +  ( ( k  x.  (
2  x.  ( m  x.  n ) ) ) ^ 2 ) )  =  ( ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ^ 2 ) ) )
7971, 78syl5ibrcom 237 . . . 4  |-  ( ( n  e.  NN  /\  m  e.  NN  /\  k  e.  NN )  ->  (
( A  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )  ->  ( ( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) ) )
80793expa 1265 . . 3  |-  ( ( ( n  e.  NN  /\  m  e.  NN )  /\  k  e.  NN )  ->  ( ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  -> 
( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) ) )
8180rexlimdva 3031 . 2  |-  ( ( n  e.  NN  /\  m  e.  NN )  ->  ( E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  ->  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 ) ) )
8281rexlimivv 3036 1  |-  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  ->  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913  (class class class)co 6650   CCcc 9934    + caddc 9939    x. cmul 9941    - cmin 10266   NNcn 11020   2c2 11070   4c4 11072   ^cexp 12860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-z 11378  df-uz 11688  df-seq 12802  df-exp 12861
This theorem is referenced by:  pythagtriplem2  15522
  Copyright terms: Public domain W3C validator