MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopkgen Structured version   Visualization version   Unicode version

Theorem qtopkgen 21513
Description: A quotient of a compactly generated space is compactly generated. (Contributed by Mario Carneiro, 9-Apr-2015.)
Hypothesis
Ref Expression
qtopcmp.1  |-  X  = 
U. J
Assertion
Ref Expression
qtopkgen  |-  ( ( J  e.  ran 𝑘Gen  /\  F  Fn  X )  ->  ( J qTop  F )  e.  ran 𝑘Gen )

Proof of Theorem qtopkgen
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 kgentop 21345 . . 3  |-  ( J  e.  ran 𝑘Gen  ->  J  e.  Top )
2 qtopcmp.1 . . . 4  |-  X  = 
U. J
32qtoptop 21503 . . 3  |-  ( ( J  e.  Top  /\  F  Fn  X )  ->  ( J qTop  F )  e.  Top )
41, 3sylan 488 . 2  |-  ( ( J  e.  ran 𝑘Gen  /\  F  Fn  X )  ->  ( J qTop  F )  e.  Top )
5 elssuni 4467 . . . . . . . 8  |-  ( x  e.  (𝑘Gen `  ( J qTop  F
) )  ->  x  C_ 
U. (𝑘Gen `  ( J qTop  F
) ) )
65adantl 482 . . . . . . 7  |-  ( ( ( J  e.  ran 𝑘Gen  /\  F  Fn  X )  /\  x  e.  (𝑘Gen `  ( J qTop  F )
) )  ->  x  C_ 
U. (𝑘Gen `  ( J qTop  F
) ) )
74adantr 481 . . . . . . . 8  |-  ( ( ( J  e.  ran 𝑘Gen  /\  F  Fn  X )  /\  x  e.  (𝑘Gen `  ( J qTop  F )
) )  ->  ( J qTop  F )  e.  Top )
8 eqid 2622 . . . . . . . . 9  |-  U. ( J qTop  F )  =  U. ( J qTop  F )
98kgenuni 21342 . . . . . . . 8  |-  ( ( J qTop  F )  e. 
Top  ->  U. ( J qTop  F
)  =  U. (𝑘Gen `  ( J qTop  F )
) )
107, 9syl 17 . . . . . . 7  |-  ( ( ( J  e.  ran 𝑘Gen  /\  F  Fn  X )  /\  x  e.  (𝑘Gen `  ( J qTop  F )
) )  ->  U. ( J qTop  F )  =  U. (𝑘Gen
`  ( J qTop  F
) ) )
116, 10sseqtr4d 3642 . . . . . 6  |-  ( ( ( J  e.  ran 𝑘Gen  /\  F  Fn  X )  /\  x  e.  (𝑘Gen `  ( J qTop  F )
) )  ->  x  C_ 
U. ( J qTop  F
) )
12 simpll 790 . . . . . . . 8  |-  ( ( ( J  e.  ran 𝑘Gen  /\  F  Fn  X )  /\  x  e.  (𝑘Gen `  ( J qTop  F )
) )  ->  J  e.  ran 𝑘Gen )
1312, 1syl 17 . . . . . . 7  |-  ( ( ( J  e.  ran 𝑘Gen  /\  F  Fn  X )  /\  x  e.  (𝑘Gen `  ( J qTop  F )
) )  ->  J  e.  Top )
14 simplr 792 . . . . . . . 8  |-  ( ( ( J  e.  ran 𝑘Gen  /\  F  Fn  X )  /\  x  e.  (𝑘Gen `  ( J qTop  F )
) )  ->  F  Fn  X )
15 dffn4 6121 . . . . . . . 8  |-  ( F  Fn  X  <->  F : X -onto-> ran  F )
1614, 15sylib 208 . . . . . . 7  |-  ( ( ( J  e.  ran 𝑘Gen  /\  F  Fn  X )  /\  x  e.  (𝑘Gen `  ( J qTop  F )
) )  ->  F : X -onto-> ran  F )
172qtopuni 21505 . . . . . . 7  |-  ( ( J  e.  Top  /\  F : X -onto-> ran  F
)  ->  ran  F  = 
U. ( J qTop  F
) )
1813, 16, 17syl2anc 693 . . . . . 6  |-  ( ( ( J  e.  ran 𝑘Gen  /\  F  Fn  X )  /\  x  e.  (𝑘Gen `  ( J qTop  F )
) )  ->  ran  F  =  U. ( J qTop 
F ) )
1911, 18sseqtr4d 3642 . . . . 5  |-  ( ( ( J  e.  ran 𝑘Gen  /\  F  Fn  X )  /\  x  e.  (𝑘Gen `  ( J qTop  F )
) )  ->  x  C_ 
ran  F )
202toptopon 20722 . . . . . . . . 9  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
2113, 20sylib 208 . . . . . . . 8  |-  ( ( ( J  e.  ran 𝑘Gen  /\  F  Fn  X )  /\  x  e.  (𝑘Gen `  ( J qTop  F )
) )  ->  J  e.  (TopOn `  X )
)
22 qtopid 21508 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  F  Fn  X )  ->  F  e.  ( J  Cn  ( J qTop  F ) ) )
2321, 14, 22syl2anc 693 . . . . . . 7  |-  ( ( ( J  e.  ran 𝑘Gen  /\  F  Fn  X )  /\  x  e.  (𝑘Gen `  ( J qTop  F )
) )  ->  F  e.  ( J  Cn  ( J qTop  F ) ) )
24 kgencn3 21361 . . . . . . . 8  |-  ( ( J  e.  ran 𝑘Gen  /\  ( J qTop  F )  e.  Top )  ->  ( J  Cn  ( J qTop  F )
)  =  ( J  Cn  (𝑘Gen `  ( J qTop  F
) ) ) )
2512, 7, 24syl2anc 693 . . . . . . 7  |-  ( ( ( J  e.  ran 𝑘Gen  /\  F  Fn  X )  /\  x  e.  (𝑘Gen `  ( J qTop  F )
) )  ->  ( J  Cn  ( J qTop  F
) )  =  ( J  Cn  (𝑘Gen `  ( J qTop  F ) ) ) )
2623, 25eleqtrd 2703 . . . . . 6  |-  ( ( ( J  e.  ran 𝑘Gen  /\  F  Fn  X )  /\  x  e.  (𝑘Gen `  ( J qTop  F )
) )  ->  F  e.  ( J  Cn  (𝑘Gen `  ( J qTop  F )
) ) )
27 cnima 21069 . . . . . 6  |-  ( ( F  e.  ( J  Cn  (𝑘Gen `  ( J qTop  F
) ) )  /\  x  e.  (𝑘Gen `  ( J qTop  F ) ) )  ->  ( `' F " x )  e.  J
)
2826, 27sylancom 701 . . . . 5  |-  ( ( ( J  e.  ran 𝑘Gen  /\  F  Fn  X )  /\  x  e.  (𝑘Gen `  ( J qTop  F )
) )  ->  ( `' F " x )  e.  J )
292elqtop2 21504 . . . . . 6  |-  ( ( J  e.  ran 𝑘Gen  /\  F : X -onto-> ran  F )  -> 
( x  e.  ( J qTop  F )  <->  ( x  C_ 
ran  F  /\  ( `' F " x )  e.  J ) ) )
3012, 16, 29syl2anc 693 . . . . 5  |-  ( ( ( J  e.  ran 𝑘Gen  /\  F  Fn  X )  /\  x  e.  (𝑘Gen `  ( J qTop  F )
) )  ->  (
x  e.  ( J qTop 
F )  <->  ( x  C_ 
ran  F  /\  ( `' F " x )  e.  J ) ) )
3119, 28, 30mpbir2and 957 . . . 4  |-  ( ( ( J  e.  ran 𝑘Gen  /\  F  Fn  X )  /\  x  e.  (𝑘Gen `  ( J qTop  F )
) )  ->  x  e.  ( J qTop  F ) )
3231ex 450 . . 3  |-  ( ( J  e.  ran 𝑘Gen  /\  F  Fn  X )  ->  (
x  e.  (𝑘Gen `  ( J qTop  F ) )  ->  x  e.  ( J qTop  F ) ) )
3332ssrdv 3609 . 2  |-  ( ( J  e.  ran 𝑘Gen  /\  F  Fn  X )  ->  (𝑘Gen `  ( J qTop  F )
)  C_  ( J qTop  F ) )
34 iskgen2 21351 . 2  |-  ( ( J qTop  F )  e. 
ran 𝑘Gen  <-> 
( ( J qTop  F
)  e.  Top  /\  (𝑘Gen
`  ( J qTop  F
) )  C_  ( J qTop  F ) ) )
354, 33, 34sylanbrc 698 1  |-  ( ( J  e.  ran 𝑘Gen  /\  F  Fn  X )  ->  ( J qTop  F )  e.  ran 𝑘Gen )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    C_ wss 3574   U.cuni 4436   `'ccnv 5113   ran crn 5115   "cima 5117    Fn wfn 5883   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650   qTop cqtop 16163   Topctop 20698  TopOnctopon 20715    Cn ccn 21028  𝑘Genckgen 21336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-qtop 16167  df-top 20699  df-topon 20716  df-bases 20750  df-cn 21031  df-cmp 21190  df-kgen 21337
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator