MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1om Structured version   Visualization version   Unicode version

Theorem r1om 9066
Description: The set of hereditarily finite sets is countable. See ackbij2 9065 for an explicit bijection that works without Infinity. See also r1omALT 9598. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Assertion
Ref Expression
r1om  |-  ( R1
`  om )  ~~  om

Proof of Theorem r1om
Dummy variables  a 
b  c  d  e  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omex 8540 . . . 4  |-  om  e.  _V
2 limom 7080 . . . 4  |-  Lim  om
3 r1lim 8635 . . . 4  |-  ( ( om  e.  _V  /\  Lim  om )  ->  ( R1 `  om )  = 
U_ a  e.  om  ( R1 `  a ) )
41, 2, 3mp2an 708 . . 3  |-  ( R1
`  om )  =  U_ a  e.  om  ( R1 `  a )
5 r1fnon 8630 . . . 4  |-  R1  Fn  On
6 fnfun 5988 . . . 4  |-  ( R1  Fn  On  ->  Fun  R1 )
7 funiunfv 6506 . . . 4  |-  ( Fun 
R1  ->  U_ a  e.  om  ( R1 `  a )  =  U. ( R1
" om ) )
85, 6, 7mp2b 10 . . 3  |-  U_ a  e.  om  ( R1 `  a )  =  U. ( R1 " om )
94, 8eqtri 2644 . 2  |-  ( R1
`  om )  =  U. ( R1 " om )
10 iuneq1 4534 . . . . . . 7  |-  ( e  =  a  ->  U_ f  e.  e  ( {
f }  X.  ~P f )  =  U_ f  e.  a  ( { f }  X.  ~P f ) )
11 sneq 4187 . . . . . . . . 9  |-  ( f  =  b  ->  { f }  =  { b } )
12 pweq 4161 . . . . . . . . 9  |-  ( f  =  b  ->  ~P f  =  ~P b
)
1311, 12xpeq12d 5140 . . . . . . . 8  |-  ( f  =  b  ->  ( { f }  X.  ~P f )  =  ( { b }  X.  ~P b ) )
1413cbviunv 4559 . . . . . . 7  |-  U_ f  e.  a  ( {
f }  X.  ~P f )  =  U_ b  e.  a  ( { b }  X.  ~P b )
1510, 14syl6eq 2672 . . . . . 6  |-  ( e  =  a  ->  U_ f  e.  e  ( {
f }  X.  ~P f )  =  U_ b  e.  a  ( { b }  X.  ~P b ) )
1615fveq2d 6195 . . . . 5  |-  ( e  =  a  ->  ( card `  U_ f  e.  e  ( { f }  X.  ~P f
) )  =  (
card `  U_ b  e.  a  ( { b }  X.  ~P b
) ) )
1716cbvmptv 4750 . . . 4  |-  ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( { f }  X.  ~P f ) ) )  =  ( a  e.  ( ~P
om  i^i  Fin )  |->  ( card `  U_ b  e.  a  ( {
b }  X.  ~P b ) ) )
18 dmeq 5324 . . . . . . . 8  |-  ( c  =  a  ->  dom  c  =  dom  a )
1918pweqd 4163 . . . . . . 7  |-  ( c  =  a  ->  ~P dom  c  =  ~P dom  a )
20 imaeq1 5461 . . . . . . . 8  |-  ( c  =  a  ->  (
c " d )  =  ( a "
d ) )
2120fveq2d 6195 . . . . . . 7  |-  ( c  =  a  ->  (
( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( {
f }  X.  ~P f ) ) ) `
 ( c "
d ) )  =  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( {
f }  X.  ~P f ) ) ) `
 ( a "
d ) ) )
2219, 21mpteq12dv 4733 . . . . . 6  |-  ( c  =  a  ->  (
d  e.  ~P dom  c  |->  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( { f }  X.  ~P f ) ) ) `  (
c " d ) ) )  =  ( d  e.  ~P dom  a  |->  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( { f }  X.  ~P f ) ) ) `  (
a " d ) ) ) )
23 imaeq2 5462 . . . . . . . 8  |-  ( d  =  b  ->  (
a " d )  =  ( a "
b ) )
2423fveq2d 6195 . . . . . . 7  |-  ( d  =  b  ->  (
( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( {
f }  X.  ~P f ) ) ) `
 ( a "
d ) )  =  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( {
f }  X.  ~P f ) ) ) `
 ( a "
b ) ) )
2524cbvmptv 4750 . . . . . 6  |-  ( d  e.  ~P dom  a  |->  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( {
f }  X.  ~P f ) ) ) `
 ( a "
d ) ) )  =  ( b  e. 
~P dom  a  |->  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( {
f }  X.  ~P f ) ) ) `
 ( a "
b ) ) )
2622, 25syl6eq 2672 . . . . 5  |-  ( c  =  a  ->  (
d  e.  ~P dom  c  |->  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( { f }  X.  ~P f ) ) ) `  (
c " d ) ) )  =  ( b  e.  ~P dom  a  |->  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( { f }  X.  ~P f ) ) ) `  (
a " b ) ) ) )
2726cbvmptv 4750 . . . 4  |-  ( c  e.  _V  |->  ( d  e.  ~P dom  c  |->  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( {
f }  X.  ~P f ) ) ) `
 ( c "
d ) ) ) )  =  ( a  e.  _V  |->  ( b  e.  ~P dom  a  |->  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( {
f }  X.  ~P f ) ) ) `
 ( a "
b ) ) ) )
28 eqid 2622 . . . 4  |-  U. ( rec ( ( c  e. 
_V  |->  ( d  e. 
~P dom  c  |->  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( {
f }  X.  ~P f ) ) ) `
 ( c "
d ) ) ) ) ,  (/) ) " om )  =  U. ( rec ( ( c  e.  _V  |->  ( d  e.  ~P dom  c  |->  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( {
f }  X.  ~P f ) ) ) `
 ( c "
d ) ) ) ) ,  (/) ) " om )
2917, 27, 28ackbij2 9065 . . 3  |-  U. ( rec ( ( c  e. 
_V  |->  ( d  e. 
~P dom  c  |->  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( {
f }  X.  ~P f ) ) ) `
 ( c "
d ) ) ) ) ,  (/) ) " om ) : U. ( R1 " om ) -1-1-onto-> om
30 fvex 6201 . . . . 5  |-  ( R1
`  om )  e.  _V
319, 30eqeltrri 2698 . . . 4  |-  U. ( R1 " om )  e. 
_V
3231f1oen 7976 . . 3  |-  ( U. ( rec ( ( c  e.  _V  |->  ( d  e.  ~P dom  c  |->  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( {
f }  X.  ~P f ) ) ) `
 ( c "
d ) ) ) ) ,  (/) ) " om ) : U. ( R1 " om ) -1-1-onto-> om  ->  U. ( R1 " om )  ~~  om )
3329, 32ax-mp 5 . 2  |-  U. ( R1 " om )  ~~  om
349, 33eqbrtri 4674 1  |-  ( R1
`  om )  ~~  om
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483    e. wcel 1990   _Vcvv 3200    i^i cin 3573   (/)c0 3915   ~Pcpw 4158   {csn 4177   U.cuni 4436   U_ciun 4520   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   dom cdm 5114   "cima 5117   Oncon0 5723   Lim wlim 5724   Fun wfun 5882    Fn wfn 5883   -1-1-onto->wf1o 5887   ` cfv 5888   omcom 7065   reccrdg 7505    ~~ cen 7952   Fincfn 7955   R1cr1 8625   cardccrd 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-r1 8627  df-rank 8628  df-card 8765  df-cda 8990
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator