Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  repswpfx Structured version   Visualization version   Unicode version

Theorem repswpfx 41436
Description: A prefix of a repeated symbol word is a repeated symbol word. (Contributed by AV, 11-May-2020.)
Assertion
Ref Expression
repswpfx  |-  ( ( S  e.  V  /\  N  e.  NN0  /\  L  e.  ( 0 ... N
) )  ->  (
( S repeatS  N ) prefix  L )  =  ( S repeatS  L ) )

Proof of Theorem repswpfx
Dummy variable  i is distinct from all other variables.
StepHypRef Expression
1 repsw 13522 . . . . 5  |-  ( ( S  e.  V  /\  N  e.  NN0 )  -> 
( S repeatS  N )  e. Word  V )
213adant3 1081 . . . 4  |-  ( ( S  e.  V  /\  N  e.  NN0  /\  L  e.  ( 0 ... N
) )  ->  ( S repeatS  N )  e. Word  V
)
3 repswlen 13523 . . . . . . . 8  |-  ( ( S  e.  V  /\  N  e.  NN0 )  -> 
( # `  ( S repeatS  N ) )  =  N )
43eqcomd 2628 . . . . . . 7  |-  ( ( S  e.  V  /\  N  e.  NN0 )  ->  N  =  ( # `  ( S repeatS  N ) ) )
54oveq2d 6666 . . . . . 6  |-  ( ( S  e.  V  /\  N  e.  NN0 )  -> 
( 0 ... N
)  =  ( 0 ... ( # `  ( S repeatS  N ) ) ) )
65eleq2d 2687 . . . . 5  |-  ( ( S  e.  V  /\  N  e.  NN0 )  -> 
( L  e.  ( 0 ... N )  <-> 
L  e.  ( 0 ... ( # `  ( S repeatS  N ) ) ) ) )
76biimp3a 1432 . . . 4  |-  ( ( S  e.  V  /\  N  e.  NN0  /\  L  e.  ( 0 ... N
) )  ->  L  e.  ( 0 ... ( # `
 ( S repeatS  N
) ) ) )
8 pfxlen 41391 . . . 4  |-  ( ( ( S repeatS  N )  e. Word  V  /\  L  e.  ( 0 ... ( # `
 ( S repeatS  N
) ) ) )  ->  ( # `  (
( S repeatS  N ) prefix  L ) )  =  L )
92, 7, 8syl2anc 693 . . 3  |-  ( ( S  e.  V  /\  N  e.  NN0  /\  L  e.  ( 0 ... N
) )  ->  ( # `
 ( ( S repeatS  N ) prefix  L ) )  =  L )
10 elfznn0 12433 . . . . . 6  |-  ( L  e.  ( 0 ... N )  ->  L  e.  NN0 )
1110anim2i 593 . . . . 5  |-  ( ( S  e.  V  /\  L  e.  ( 0 ... N ) )  ->  ( S  e.  V  /\  L  e. 
NN0 ) )
12113adant2 1080 . . . 4  |-  ( ( S  e.  V  /\  N  e.  NN0  /\  L  e.  ( 0 ... N
) )  ->  ( S  e.  V  /\  L  e.  NN0 ) )
13 repswlen 13523 . . . 4  |-  ( ( S  e.  V  /\  L  e.  NN0 )  -> 
( # `  ( S repeatS  L ) )  =  L )
1412, 13syl 17 . . 3  |-  ( ( S  e.  V  /\  N  e.  NN0  /\  L  e.  ( 0 ... N
) )  ->  ( # `
 ( S repeatS  L
) )  =  L )
159, 14eqtr4d 2659 . 2  |-  ( ( S  e.  V  /\  N  e.  NN0  /\  L  e.  ( 0 ... N
) )  ->  ( # `
 ( ( S repeatS  N ) prefix  L ) )  =  ( # `  ( S repeatS  L ) ) )
16 simpl1 1064 . . . . 5  |-  ( ( ( S  e.  V  /\  N  e.  NN0  /\  L  e.  ( 0 ... N ) )  /\  i  e.  ( 0..^ ( # `  (
( S repeatS  N ) prefix  L ) ) ) )  ->  S  e.  V
)
17 simpl2 1065 . . . . 5  |-  ( ( ( S  e.  V  /\  N  e.  NN0  /\  L  e.  ( 0 ... N ) )  /\  i  e.  ( 0..^ ( # `  (
( S repeatS  N ) prefix  L ) ) ) )  ->  N  e.  NN0 )
18 elfzuz3 12339 . . . . . . . . 9  |-  ( L  e.  ( 0 ... N )  ->  N  e.  ( ZZ>= `  L )
)
19183ad2ant3 1084 . . . . . . . 8  |-  ( ( S  e.  V  /\  N  e.  NN0  /\  L  e.  ( 0 ... N
) )  ->  N  e.  ( ZZ>= `  L )
)
209fveq2d 6195 . . . . . . . 8  |-  ( ( S  e.  V  /\  N  e.  NN0  /\  L  e.  ( 0 ... N
) )  ->  ( ZZ>=
`  ( # `  (
( S repeatS  N ) prefix  L ) ) )  =  ( ZZ>= `  L )
)
2119, 20eleqtrrd 2704 . . . . . . 7  |-  ( ( S  e.  V  /\  N  e.  NN0  /\  L  e.  ( 0 ... N
) )  ->  N  e.  ( ZZ>= `  ( # `  (
( S repeatS  N ) prefix  L ) ) ) )
22 fzoss2 12496 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  ( # `
 ( ( S repeatS  N ) prefix  L ) ) )  ->  ( 0..^ ( # `  (
( S repeatS  N ) prefix  L ) ) )  C_  ( 0..^ N ) )
2321, 22syl 17 . . . . . 6  |-  ( ( S  e.  V  /\  N  e.  NN0  /\  L  e.  ( 0 ... N
) )  ->  (
0..^ ( # `  (
( S repeatS  N ) prefix  L ) ) )  C_  ( 0..^ N ) )
2423sselda 3603 . . . . 5  |-  ( ( ( S  e.  V  /\  N  e.  NN0  /\  L  e.  ( 0 ... N ) )  /\  i  e.  ( 0..^ ( # `  (
( S repeatS  N ) prefix  L ) ) ) )  ->  i  e.  ( 0..^ N ) )
25 repswsymb 13521 . . . . 5  |-  ( ( S  e.  V  /\  N  e.  NN0  /\  i  e.  ( 0..^ N ) )  ->  ( ( S repeatS  N ) `  i
)  =  S )
2616, 17, 24, 25syl3anc 1326 . . . 4  |-  ( ( ( S  e.  V  /\  N  e.  NN0  /\  L  e.  ( 0 ... N ) )  /\  i  e.  ( 0..^ ( # `  (
( S repeatS  N ) prefix  L ) ) ) )  ->  ( ( S repeatS  N ) `  i
)  =  S )
272adantr 481 . . . . 5  |-  ( ( ( S  e.  V  /\  N  e.  NN0  /\  L  e.  ( 0 ... N ) )  /\  i  e.  ( 0..^ ( # `  (
( S repeatS  N ) prefix  L ) ) ) )  ->  ( S repeatS  N
)  e. Word  V )
287adantr 481 . . . . 5  |-  ( ( ( S  e.  V  /\  N  e.  NN0  /\  L  e.  ( 0 ... N ) )  /\  i  e.  ( 0..^ ( # `  (
( S repeatS  N ) prefix  L ) ) ) )  ->  L  e.  ( 0 ... ( # `  ( S repeatS  N )
) ) )
299oveq2d 6666 . . . . . . 7  |-  ( ( S  e.  V  /\  N  e.  NN0  /\  L  e.  ( 0 ... N
) )  ->  (
0..^ ( # `  (
( S repeatS  N ) prefix  L ) ) )  =  ( 0..^ L ) )
3029eleq2d 2687 . . . . . 6  |-  ( ( S  e.  V  /\  N  e.  NN0  /\  L  e.  ( 0 ... N
) )  ->  (
i  e.  ( 0..^ ( # `  (
( S repeatS  N ) prefix  L ) ) )  <->  i  e.  ( 0..^ L ) ) )
3130biimpa 501 . . . . 5  |-  ( ( ( S  e.  V  /\  N  e.  NN0  /\  L  e.  ( 0 ... N ) )  /\  i  e.  ( 0..^ ( # `  (
( S repeatS  N ) prefix  L ) ) ) )  ->  i  e.  ( 0..^ L ) )
32 pfxfv 41399 . . . . 5  |-  ( ( ( S repeatS  N )  e. Word  V  /\  L  e.  ( 0 ... ( # `
 ( S repeatS  N
) ) )  /\  i  e.  ( 0..^ L ) )  -> 
( ( ( S repeatS  N ) prefix  L ) `  i )  =  ( ( S repeatS  N ) `  i ) )
3327, 28, 31, 32syl3anc 1326 . . . 4  |-  ( ( ( S  e.  V  /\  N  e.  NN0  /\  L  e.  ( 0 ... N ) )  /\  i  e.  ( 0..^ ( # `  (
( S repeatS  N ) prefix  L ) ) ) )  ->  ( ( ( S repeatS  N ) prefix  L ) `
 i )  =  ( ( S repeatS  N
) `  i )
)
34103ad2ant3 1084 . . . . . 6  |-  ( ( S  e.  V  /\  N  e.  NN0  /\  L  e.  ( 0 ... N
) )  ->  L  e.  NN0 )
3534adantr 481 . . . . 5  |-  ( ( ( S  e.  V  /\  N  e.  NN0  /\  L  e.  ( 0 ... N ) )  /\  i  e.  ( 0..^ ( # `  (
( S repeatS  N ) prefix  L ) ) ) )  ->  L  e.  NN0 )
36 repswsymb 13521 . . . . 5  |-  ( ( S  e.  V  /\  L  e.  NN0  /\  i  e.  ( 0..^ L ) )  ->  ( ( S repeatS  L ) `  i
)  =  S )
3716, 35, 31, 36syl3anc 1326 . . . 4  |-  ( ( ( S  e.  V  /\  N  e.  NN0  /\  L  e.  ( 0 ... N ) )  /\  i  e.  ( 0..^ ( # `  (
( S repeatS  N ) prefix  L ) ) ) )  ->  ( ( S repeatS  L ) `  i
)  =  S )
3826, 33, 373eqtr4d 2666 . . 3  |-  ( ( ( S  e.  V  /\  N  e.  NN0  /\  L  e.  ( 0 ... N ) )  /\  i  e.  ( 0..^ ( # `  (
( S repeatS  N ) prefix  L ) ) ) )  ->  ( ( ( S repeatS  N ) prefix  L ) `
 i )  =  ( ( S repeatS  L
) `  i )
)
3938ralrimiva 2966 . 2  |-  ( ( S  e.  V  /\  N  e.  NN0  /\  L  e.  ( 0 ... N
) )  ->  A. i  e.  ( 0..^ ( # `  ( ( S repeatS  N
) prefix  L ) ) ) ( ( ( S repeatS  N ) prefix  L ) `  i )  =  ( ( S repeatS  L ) `  i ) )
40 pfxcl 41386 . . . 4  |-  ( ( S repeatS  N )  e. Word  V  ->  ( ( S repeatS  N
) prefix  L )  e. Word  V
)
412, 40syl 17 . . 3  |-  ( ( S  e.  V  /\  N  e.  NN0  /\  L  e.  ( 0 ... N
) )  ->  (
( S repeatS  N ) prefix  L )  e. Word  V )
42 repsw 13522 . . . 4  |-  ( ( S  e.  V  /\  L  e.  NN0 )  -> 
( S repeatS  L )  e. Word  V )
4312, 42syl 17 . . 3  |-  ( ( S  e.  V  /\  N  e.  NN0  /\  L  e.  ( 0 ... N
) )  ->  ( S repeatS  L )  e. Word  V
)
44 eqwrd 13346 . . 3  |-  ( ( ( ( S repeatS  N
) prefix  L )  e. Word  V  /\  ( S repeatS  L )  e. Word  V )  ->  (
( ( S repeatS  N
) prefix  L )  =  ( S repeatS  L )  <->  ( ( # `
 ( ( S repeatS  N ) prefix  L ) )  =  ( # `  ( S repeatS  L ) )  /\  A. i  e.  ( 0..^ ( # `  (
( S repeatS  N ) prefix  L ) ) ) ( ( ( S repeatS  N
) prefix  L ) `  i
)  =  ( ( S repeatS  L ) `  i
) ) ) )
4541, 43, 44syl2anc 693 . 2  |-  ( ( S  e.  V  /\  N  e.  NN0  /\  L  e.  ( 0 ... N
) )  ->  (
( ( S repeatS  N
) prefix  L )  =  ( S repeatS  L )  <->  ( ( # `
 ( ( S repeatS  N ) prefix  L ) )  =  ( # `  ( S repeatS  L ) )  /\  A. i  e.  ( 0..^ ( # `  (
( S repeatS  N ) prefix  L ) ) ) ( ( ( S repeatS  N
) prefix  L ) `  i
)  =  ( ( S repeatS  L ) `  i
) ) ) )
4615, 39, 45mpbir2and 957 1  |-  ( ( S  e.  V  /\  N  e.  NN0  /\  L  e.  ( 0 ... N
) )  ->  (
( S repeatS  N ) prefix  L )  =  ( S repeatS  L ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574   ` cfv 5888  (class class class)co 6650   0cc0 9936   NN0cn0 11292   ZZ>=cuz 11687   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291   repeatS creps 13298   prefix cpfx 41381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-substr 13303  df-reps 13306  df-pfx 41382
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator