Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cshword2 Structured version   Visualization version   Unicode version

Theorem cshword2 41437
Description: Perform a cyclical shift for a word. (Contributed by AV, 11-May-2020.)
Assertion
Ref Expression
cshword2  |-  ( ( W  e. Word  V  /\  N  e.  ZZ )  ->  ( W cyclShift  N )  =  ( ( W substr  <. ( N  mod  ( # `
 W ) ) ,  ( # `  W
) >. ) ++  ( W prefix 
( N  mod  ( # `
 W ) ) ) ) )

Proof of Theorem cshword2
Dummy variables  l  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iswrd 13307 . . . . 5  |-  ( W  e. Word  V  <->  E. l  e.  NN0  W : ( 0..^ l ) --> V )
2 ffn 6045 . . . . . 6  |-  ( W : ( 0..^ l ) --> V  ->  W  Fn  ( 0..^ l ) )
32reximi 3011 . . . . 5  |-  ( E. l  e.  NN0  W : ( 0..^ l ) --> V  ->  E. l  e.  NN0  W  Fn  (
0..^ l ) )
41, 3sylbi 207 . . . 4  |-  ( W  e. Word  V  ->  E. l  e.  NN0  W  Fn  (
0..^ l ) )
5 fneq1 5979 . . . . . 6  |-  ( w  =  W  ->  (
w  Fn  ( 0..^ l )  <->  W  Fn  ( 0..^ l ) ) )
65rexbidv 3052 . . . . 5  |-  ( w  =  W  ->  ( E. l  e.  NN0  w  Fn  ( 0..^ l )  <->  E. l  e.  NN0  W  Fn  (
0..^ l ) ) )
76elabg 3351 . . . 4  |-  ( W  e. Word  V  ->  ( W  e.  { w  |  E. l  e.  NN0  w  Fn  ( 0..^ l ) }  <->  E. l  e.  NN0  W  Fn  (
0..^ l ) ) )
84, 7mpbird 247 . . 3  |-  ( W  e. Word  V  ->  W  e.  { w  |  E. l  e.  NN0  w  Fn  ( 0..^ l ) } )
9 cshfn 13536 . . 3  |-  ( ( W  e.  { w  |  E. l  e.  NN0  w  Fn  ( 0..^ l ) }  /\  N  e.  ZZ )  ->  ( W cyclShift  N )  =  if ( W  =  (/) ,  (/) ,  ( ( W substr  <. ( N  mod  ( # `  W ) ) ,  ( # `  W ) >. ) ++  ( W substr  <. 0 ,  ( N  mod  ( # `
 W ) )
>. ) ) ) )
108, 9sylan 488 . 2  |-  ( ( W  e. Word  V  /\  N  e.  ZZ )  ->  ( W cyclShift  N )  =  if ( W  =  (/) ,  (/) ,  ( ( W substr  <. ( N  mod  ( # `  W ) ) ,  ( # `  W ) >. ) ++  ( W substr  <. 0 ,  ( N  mod  ( # `
 W ) )
>. ) ) ) )
11 iftrue 4092 . . . . 5  |-  ( W  =  (/)  ->  if ( W  =  (/) ,  (/) ,  ( ( W substr  <. ( N  mod  ( # `  W
) ) ,  (
# `  W ) >. ) ++  ( W substr  <. 0 ,  ( N  mod  ( # `  W ) ) >. ) ) )  =  (/) )
1211adantr 481 . . . 4  |-  ( ( W  =  (/)  /\  ( W  e. Word  V  /\  N  e.  ZZ ) )  ->  if ( W  =  (/) ,  (/) ,  ( ( W substr  <. ( N  mod  ( # `
 W ) ) ,  ( # `  W
) >. ) ++  ( W substr  <. 0 ,  ( N  mod  ( # `  W
) ) >. )
) )  =  (/) )
13 oveq1 6657 . . . . . . . 8  |-  ( W  =  (/)  ->  ( W substr  <. ( N  mod  ( # `
 W ) ) ,  ( # `  W
) >. )  =  (
(/) substr  <. ( N  mod  ( # `  W ) ) ,  ( # `  W ) >. )
)
14 swrd0 13434 . . . . . . . 8  |-  ( (/) substr  <.
( N  mod  ( # `
 W ) ) ,  ( # `  W
) >. )  =  (/)
1513, 14syl6eq 2672 . . . . . . 7  |-  ( W  =  (/)  ->  ( W substr  <. ( N  mod  ( # `
 W ) ) ,  ( # `  W
) >. )  =  (/) )
16 oveq1 6657 . . . . . . . 8  |-  ( W  =  (/)  ->  ( W prefix 
( N  mod  ( # `
 W ) ) )  =  ( (/) prefix  ( N  mod  ( # `  W ) ) ) )
17 pfx0 41385 . . . . . . . 8  |-  ( (/) prefix  ( N  mod  ( # `  W ) ) )  =  (/)
1816, 17syl6eq 2672 . . . . . . 7  |-  ( W  =  (/)  ->  ( W prefix 
( N  mod  ( # `
 W ) ) )  =  (/) )
1915, 18oveq12d 6668 . . . . . 6  |-  ( W  =  (/)  ->  ( ( W substr  <. ( N  mod  ( # `  W ) ) ,  ( # `  W ) >. ) ++  ( W prefix  ( N  mod  ( # `  W ) ) ) )  =  ( (/) ++  (/) ) )
2019adantr 481 . . . . 5  |-  ( ( W  =  (/)  /\  ( W  e. Word  V  /\  N  e.  ZZ ) )  -> 
( ( W substr  <. ( N  mod  ( # `  W
) ) ,  (
# `  W ) >. ) ++  ( W prefix  ( N  mod  ( # `  W
) ) ) )  =  ( (/) ++  (/) ) )
21 wrd0 13330 . . . . . 6  |-  (/)  e. Word  _V
22 ccatrid 13370 . . . . . 6  |-  ( (/)  e. Word  _V  ->  ( (/) ++  (/) )  =  (/) )
2321, 22ax-mp 5 . . . . 5  |-  ( (/) ++  (/) )  =  (/)
2420, 23syl6req 2673 . . . 4  |-  ( ( W  =  (/)  /\  ( W  e. Word  V  /\  N  e.  ZZ ) )  ->  (/)  =  ( ( W substr  <. ( N  mod  ( # `
 W ) ) ,  ( # `  W
) >. ) ++  ( W prefix 
( N  mod  ( # `
 W ) ) ) ) )
2512, 24eqtrd 2656 . . 3  |-  ( ( W  =  (/)  /\  ( W  e. Word  V  /\  N  e.  ZZ ) )  ->  if ( W  =  (/) ,  (/) ,  ( ( W substr  <. ( N  mod  ( # `
 W ) ) ,  ( # `  W
) >. ) ++  ( W substr  <. 0 ,  ( N  mod  ( # `  W
) ) >. )
) )  =  ( ( W substr  <. ( N  mod  ( # `  W
) ) ,  (
# `  W ) >. ) ++  ( W prefix  ( N  mod  ( # `  W
) ) ) ) )
26 iffalse 4095 . . . . 5  |-  ( -.  W  =  (/)  ->  if ( W  =  (/) ,  (/) ,  ( ( W substr  <. ( N  mod  ( # `  W
) ) ,  (
# `  W ) >. ) ++  ( W substr  <. 0 ,  ( N  mod  ( # `  W ) ) >. ) ) )  =  ( ( W substr  <. ( N  mod  ( # `
 W ) ) ,  ( # `  W
) >. ) ++  ( W substr  <. 0 ,  ( N  mod  ( # `  W
) ) >. )
) )
2726adantr 481 . . . 4  |-  ( ( -.  W  =  (/)  /\  ( W  e. Word  V  /\  N  e.  ZZ ) )  ->  if ( W  =  (/) ,  (/) ,  ( ( W substr  <. ( N  mod  ( # `  W
) ) ,  (
# `  W ) >. ) ++  ( W substr  <. 0 ,  ( N  mod  ( # `  W ) ) >. ) ) )  =  ( ( W substr  <. ( N  mod  ( # `
 W ) ) ,  ( # `  W
) >. ) ++  ( W substr  <. 0 ,  ( N  mod  ( # `  W
) ) >. )
) )
28 simprl 794 . . . . . . 7  |-  ( ( -.  W  =  (/)  /\  ( W  e. Word  V  /\  N  e.  ZZ ) )  ->  W  e. Word  V )
29 simprr 796 . . . . . . . 8  |-  ( ( -.  W  =  (/)  /\  ( W  e. Word  V  /\  N  e.  ZZ ) )  ->  N  e.  ZZ )
30 df-ne 2795 . . . . . . . . . 10  |-  ( W  =/=  (/)  <->  -.  W  =  (/) )
31 lennncl 13325 . . . . . . . . . . . 12  |-  ( ( W  e. Word  V  /\  W  =/=  (/) )  ->  ( # `
 W )  e.  NN )
3231ex 450 . . . . . . . . . . 11  |-  ( W  e. Word  V  ->  ( W  =/=  (/)  ->  ( # `  W
)  e.  NN ) )
3332adantr 481 . . . . . . . . . 10  |-  ( ( W  e. Word  V  /\  N  e.  ZZ )  ->  ( W  =/=  (/)  ->  ( # `
 W )  e.  NN ) )
3430, 33syl5bir 233 . . . . . . . . 9  |-  ( ( W  e. Word  V  /\  N  e.  ZZ )  ->  ( -.  W  =  (/)  ->  ( # `  W
)  e.  NN ) )
3534impcom 446 . . . . . . . 8  |-  ( ( -.  W  =  (/)  /\  ( W  e. Word  V  /\  N  e.  ZZ ) )  ->  ( # `
 W )  e.  NN )
3629, 35zmodcld 12691 . . . . . . 7  |-  ( ( -.  W  =  (/)  /\  ( W  e. Word  V  /\  N  e.  ZZ ) )  ->  ( N  mod  ( # `  W
) )  e.  NN0 )
37 pfxval 41383 . . . . . . 7  |-  ( ( W  e. Word  V  /\  ( N  mod  ( # `  W ) )  e. 
NN0 )  ->  ( W prefix  ( N  mod  ( # `
 W ) ) )  =  ( W substr  <. 0 ,  ( N  mod  ( # `  W
) ) >. )
)
3828, 36, 37syl2anc 693 . . . . . 6  |-  ( ( -.  W  =  (/)  /\  ( W  e. Word  V  /\  N  e.  ZZ ) )  ->  ( W prefix  ( N  mod  ( # `
 W ) ) )  =  ( W substr  <. 0 ,  ( N  mod  ( # `  W
) ) >. )
)
3938eqcomd 2628 . . . . 5  |-  ( ( -.  W  =  (/)  /\  ( W  e. Word  V  /\  N  e.  ZZ ) )  ->  ( W substr  <. 0 ,  ( N  mod  ( # `  W ) ) >.
)  =  ( W prefix 
( N  mod  ( # `
 W ) ) ) )
4039oveq2d 6666 . . . 4  |-  ( ( -.  W  =  (/)  /\  ( W  e. Word  V  /\  N  e.  ZZ ) )  ->  (
( W substr  <. ( N  mod  ( # `  W
) ) ,  (
# `  W ) >. ) ++  ( W substr  <. 0 ,  ( N  mod  ( # `  W ) ) >. ) )  =  ( ( W substr  <. ( N  mod  ( # `  W
) ) ,  (
# `  W ) >. ) ++  ( W prefix  ( N  mod  ( # `  W
) ) ) ) )
4127, 40eqtrd 2656 . . 3  |-  ( ( -.  W  =  (/)  /\  ( W  e. Word  V  /\  N  e.  ZZ ) )  ->  if ( W  =  (/) ,  (/) ,  ( ( W substr  <. ( N  mod  ( # `  W
) ) ,  (
# `  W ) >. ) ++  ( W substr  <. 0 ,  ( N  mod  ( # `  W ) ) >. ) ) )  =  ( ( W substr  <. ( N  mod  ( # `
 W ) ) ,  ( # `  W
) >. ) ++  ( W prefix 
( N  mod  ( # `
 W ) ) ) ) )
4225, 41pm2.61ian 831 . 2  |-  ( ( W  e. Word  V  /\  N  e.  ZZ )  ->  if ( W  =  (/) ,  (/) ,  ( ( W substr  <. ( N  mod  ( # `  W ) ) ,  ( # `  W ) >. ) ++  ( W substr  <. 0 ,  ( N  mod  ( # `
 W ) )
>. ) ) )  =  ( ( W substr  <. ( N  mod  ( # `  W
) ) ,  (
# `  W ) >. ) ++  ( W prefix  ( N  mod  ( # `  W
) ) ) ) )
4310, 42eqtrd 2656 1  |-  ( ( W  e. Word  V  /\  N  e.  ZZ )  ->  ( W cyclShift  N )  =  ( ( W substr  <. ( N  mod  ( # `
 W ) ) ,  ( # `  W
) >. ) ++  ( W prefix 
( N  mod  ( # `
 W ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608    =/= wne 2794   E.wrex 2913   _Vcvv 3200   (/)c0 3915   ifcif 4086   <.cop 4183    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   0cc0 9936   NNcn 11020   NN0cn0 11292   ZZcz 11377  ..^cfzo 12465    mod cmo 12668   #chash 13117  Word cword 13291   ++ cconcat 13293   substr csubstr 13295   cyclShift ccsh 13534   prefix cpfx 41381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-hash 13118  df-word 13299  df-concat 13301  df-substr 13303  df-csh 13535  df-pfx 41382
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator