MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resrhm Structured version   Visualization version   Unicode version

Theorem resrhm 18809
Description: Restriction of a ring homomorphism to a subring is a homomorphism. (Contributed by Mario Carneiro, 12-Mar-2015.)
Hypothesis
Ref Expression
resrhm.u  |-  U  =  ( Ss  X )
Assertion
Ref Expression
resrhm  |-  ( ( F  e.  ( S RingHom  T )  /\  X  e.  (SubRing `  S )
)  ->  ( F  |`  X )  e.  ( U RingHom  T ) )

Proof of Theorem resrhm
StepHypRef Expression
1 rhmrcl2 18720 . . 3  |-  ( F  e.  ( S RingHom  T
)  ->  T  e.  Ring )
2 resrhm.u . . . 4  |-  U  =  ( Ss  X )
32subrgring 18783 . . 3  |-  ( X  e.  (SubRing `  S
)  ->  U  e.  Ring )
41, 3anim12ci 591 . 2  |-  ( ( F  e.  ( S RingHom  T )  /\  X  e.  (SubRing `  S )
)  ->  ( U  e.  Ring  /\  T  e.  Ring ) )
5 rhmghm 18725 . . . 4  |-  ( F  e.  ( S RingHom  T
)  ->  F  e.  ( S  GrpHom  T ) )
6 subrgsubg 18786 . . . 4  |-  ( X  e.  (SubRing `  S
)  ->  X  e.  (SubGrp `  S ) )
72resghm 17676 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  (SubGrp `  S )
)  ->  ( F  |`  X )  e.  ( U  GrpHom  T ) )
85, 6, 7syl2an 494 . . 3  |-  ( ( F  e.  ( S RingHom  T )  /\  X  e.  (SubRing `  S )
)  ->  ( F  |`  X )  e.  ( U  GrpHom  T ) )
9 eqid 2622 . . . . . 6  |-  (mulGrp `  S )  =  (mulGrp `  S )
10 eqid 2622 . . . . . 6  |-  (mulGrp `  T )  =  (mulGrp `  T )
119, 10rhmmhm 18722 . . . . 5  |-  ( F  e.  ( S RingHom  T
)  ->  F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  T ) ) )
129subrgsubm 18793 . . . . 5  |-  ( X  e.  (SubRing `  S
)  ->  X  e.  (SubMnd `  (mulGrp `  S
) ) )
13 eqid 2622 . . . . . 6  |-  ( (mulGrp `  S )s  X )  =  ( (mulGrp `  S )s  X
)
1413resmhm 17359 . . . . 5  |-  ( ( F  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  T ) )  /\  X  e.  (SubMnd `  (mulGrp `  S ) ) )  ->  ( F  |`  X )  e.  ( ( (mulGrp `  S
)s 
X ) MndHom  (mulGrp `  T
) ) )
1511, 12, 14syl2an 494 . . . 4  |-  ( ( F  e.  ( S RingHom  T )  /\  X  e.  (SubRing `  S )
)  ->  ( F  |`  X )  e.  ( ( (mulGrp `  S
)s 
X ) MndHom  (mulGrp `  T
) ) )
16 rhmrcl1 18719 . . . . . 6  |-  ( F  e.  ( S RingHom  T
)  ->  S  e.  Ring )
172, 9mgpress 18500 . . . . . 6  |-  ( ( S  e.  Ring  /\  X  e.  (SubRing `  S )
)  ->  ( (mulGrp `  S )s  X )  =  (mulGrp `  U ) )
1816, 17sylan 488 . . . . 5  |-  ( ( F  e.  ( S RingHom  T )  /\  X  e.  (SubRing `  S )
)  ->  ( (mulGrp `  S )s  X )  =  (mulGrp `  U ) )
1918oveq1d 6665 . . . 4  |-  ( ( F  e.  ( S RingHom  T )  /\  X  e.  (SubRing `  S )
)  ->  ( (
(mulGrp `  S )s  X
) MndHom  (mulGrp `  T )
)  =  ( (mulGrp `  U ) MndHom  (mulGrp `  T ) ) )
2015, 19eleqtrd 2703 . . 3  |-  ( ( F  e.  ( S RingHom  T )  /\  X  e.  (SubRing `  S )
)  ->  ( F  |`  X )  e.  ( (mulGrp `  U ) MndHom  (mulGrp `  T ) ) )
218, 20jca 554 . 2  |-  ( ( F  e.  ( S RingHom  T )  /\  X  e.  (SubRing `  S )
)  ->  ( ( F  |`  X )  e.  ( U  GrpHom  T )  /\  ( F  |`  X )  e.  ( (mulGrp `  U ) MndHom  (mulGrp `  T ) ) ) )
22 eqid 2622 . . 3  |-  (mulGrp `  U )  =  (mulGrp `  U )
2322, 10isrhm 18721 . 2  |-  ( ( F  |`  X )  e.  ( U RingHom  T )  <->  ( ( U  e.  Ring  /\  T  e.  Ring )  /\  ( ( F  |`  X )  e.  ( U  GrpHom  T )  /\  ( F  |`  X )  e.  ( (mulGrp `  U ) MndHom  (mulGrp `  T
) ) ) ) )
244, 21, 23sylanbrc 698 1  |-  ( ( F  e.  ( S RingHom  T )  /\  X  e.  (SubRing `  S )
)  ->  ( F  |`  X )  e.  ( U RingHom  T ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    |` cres 5116   ` cfv 5888  (class class class)co 6650   ↾s cress 15858   MndHom cmhm 17333  SubMndcsubmnd 17334  SubGrpcsubg 17588    GrpHom cghm 17657  mulGrpcmgp 18489   Ringcrg 18547   RingHom crh 18712  SubRingcsubrg 18776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-subg 17591  df-ghm 17658  df-mgp 18490  df-ur 18502  df-ring 18549  df-rnghom 18715  df-subrg 18778
This theorem is referenced by:  evlsval2  19520
  Copyright terms: Public domain W3C validator