MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlsval2 Structured version   Visualization version   Unicode version

Theorem evlsval2 19520
Description: Characterizing properties of the polynomial evaluation map function. (Contributed by Stefan O'Rear, 12-Mar-2015.) (Revised by AV, 18-Sep-2021.)
Hypotheses
Ref Expression
evlsval.q  |-  Q  =  ( ( I evalSub  S
) `  R )
evlsval.w  |-  W  =  ( I mPoly  U )
evlsval.v  |-  V  =  ( I mVar  U )
evlsval.u  |-  U  =  ( Ss  R )
evlsval.t  |-  T  =  ( S  ^s  ( B  ^m  I ) )
evlsval.b  |-  B  =  ( Base `  S
)
evlsval.a  |-  A  =  (algSc `  W )
evlsval.x  |-  X  =  ( x  e.  R  |->  ( ( B  ^m  I )  X.  {
x } ) )
evlsval.y  |-  Y  =  ( x  e.  I  |->  ( g  e.  ( B  ^m  I ) 
|->  ( g `  x
) ) )
Assertion
Ref Expression
evlsval2  |-  ( ( I  e.  Z  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  ( Q  e.  ( W RingHom  T )  /\  ( ( Q  o.  A )  =  X  /\  ( Q  o.  V )  =  Y ) ) )
Distinct variable groups:    g, I, x    x, R    S, g, x    B, g, x    R, g    x, T    g, Z, x
Allowed substitution hints:    A( x, g)    Q( x, g)    T( g)    U( x, g)    V( x, g)    W( x, g)    X( x, g)    Y( x, g)

Proof of Theorem evlsval2
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 evlsval.q . . . 4  |-  Q  =  ( ( I evalSub  S
) `  R )
2 evlsval.w . . . 4  |-  W  =  ( I mPoly  U )
3 evlsval.v . . . 4  |-  V  =  ( I mVar  U )
4 evlsval.u . . . 4  |-  U  =  ( Ss  R )
5 evlsval.t . . . 4  |-  T  =  ( S  ^s  ( B  ^m  I ) )
6 evlsval.b . . . 4  |-  B  =  ( Base `  S
)
7 evlsval.a . . . 4  |-  A  =  (algSc `  W )
8 evlsval.x . . . 4  |-  X  =  ( x  e.  R  |->  ( ( B  ^m  I )  X.  {
x } ) )
9 evlsval.y . . . 4  |-  Y  =  ( x  e.  I  |->  ( g  e.  ( B  ^m  I ) 
|->  ( g `  x
) ) )
101, 2, 3, 4, 5, 6, 7, 8, 9evlsval 19519 . . 3  |-  ( ( I  e.  Z  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  Q  =  ( iota_ m  e.  ( W RingHom  T ) ( ( m  o.  A )  =  X  /\  (
m  o.  V )  =  Y ) ) )
11 eqid 2622 . . . . 5  |-  ( Base `  T )  =  (
Base `  T )
12 elex 3212 . . . . . 6  |-  ( I  e.  Z  ->  I  e.  _V )
13123ad2ant1 1082 . . . . 5  |-  ( ( I  e.  Z  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  I  e.  _V )
144subrgcrng 18784 . . . . . 6  |-  ( ( S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  U  e.  CRing
)
15143adant1 1079 . . . . 5  |-  ( ( I  e.  Z  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  U  e.  CRing
)
16 simp2 1062 . . . . . 6  |-  ( ( I  e.  Z  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  S  e.  CRing
)
17 ovex 6678 . . . . . 6  |-  ( B  ^m  I )  e. 
_V
185pwscrng 18617 . . . . . 6  |-  ( ( S  e.  CRing  /\  ( B  ^m  I )  e. 
_V )  ->  T  e.  CRing )
1916, 17, 18sylancl 694 . . . . 5  |-  ( ( I  e.  Z  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  T  e.  CRing
)
206subrgss 18781 . . . . . . . . 9  |-  ( R  e.  (SubRing `  S
)  ->  R  C_  B
)
21203ad2ant3 1084 . . . . . . . 8  |-  ( ( I  e.  Z  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  R  C_  B
)
2221resmptd 5452 . . . . . . 7  |-  ( ( I  e.  Z  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  ( (
x  e.  B  |->  ( ( B  ^m  I
)  X.  { x } ) )  |`  R )  =  ( x  e.  R  |->  ( ( B  ^m  I
)  X.  { x } ) ) )
2322, 8syl6eqr 2674 . . . . . 6  |-  ( ( I  e.  Z  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  ( (
x  e.  B  |->  ( ( B  ^m  I
)  X.  { x } ) )  |`  R )  =  X )
24 crngring 18558 . . . . . . . . 9  |-  ( S  e.  CRing  ->  S  e.  Ring )
25243ad2ant2 1083 . . . . . . . 8  |-  ( ( I  e.  Z  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  S  e.  Ring )
26 eqid 2622 . . . . . . . . 9  |-  ( x  e.  B  |->  ( ( B  ^m  I )  X.  { x }
) )  =  ( x  e.  B  |->  ( ( B  ^m  I
)  X.  { x } ) )
275, 6, 26pwsdiagrhm 18813 . . . . . . . 8  |-  ( ( S  e.  Ring  /\  ( B  ^m  I )  e. 
_V )  ->  (
x  e.  B  |->  ( ( B  ^m  I
)  X.  { x } ) )  e.  ( S RingHom  T )
)
2825, 17, 27sylancl 694 . . . . . . 7  |-  ( ( I  e.  Z  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  ( x  e.  B  |->  ( ( B  ^m  I )  X.  { x }
) )  e.  ( S RingHom  T ) )
29 simp3 1063 . . . . . . 7  |-  ( ( I  e.  Z  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  R  e.  (SubRing `  S ) )
304resrhm 18809 . . . . . . 7  |-  ( ( ( x  e.  B  |->  ( ( B  ^m  I )  X.  {
x } ) )  e.  ( S RingHom  T
)  /\  R  e.  (SubRing `  S ) )  ->  ( ( x  e.  B  |->  ( ( B  ^m  I )  X.  { x }
) )  |`  R )  e.  ( U RingHom  T
) )
3128, 29, 30syl2anc 693 . . . . . 6  |-  ( ( I  e.  Z  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  ( (
x  e.  B  |->  ( ( B  ^m  I
)  X.  { x } ) )  |`  R )  e.  ( U RingHom  T ) )
3223, 31eqeltrrd 2702 . . . . 5  |-  ( ( I  e.  Z  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  X  e.  ( U RingHom  T ) )
33 fvex 6201 . . . . . . . . . . . 12  |-  ( Base `  S )  e.  _V
346, 33eqeltri 2697 . . . . . . . . . . 11  |-  B  e. 
_V
35 simpl1 1064 . . . . . . . . . . 11  |-  ( ( ( I  e.  Z  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  /\  x  e.  I )  ->  I  e.  Z )
36 elmapg 7870 . . . . . . . . . . 11  |-  ( ( B  e.  _V  /\  I  e.  Z )  ->  ( g  e.  ( B  ^m  I )  <-> 
g : I --> B ) )
3734, 35, 36sylancr 695 . . . . . . . . . 10  |-  ( ( ( I  e.  Z  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  /\  x  e.  I )  ->  (
g  e.  ( B  ^m  I )  <->  g :
I --> B ) )
3837biimpa 501 . . . . . . . . 9  |-  ( ( ( ( I  e.  Z  /\  S  e. 
CRing  /\  R  e.  (SubRing `  S ) )  /\  x  e.  I )  /\  g  e.  ( B  ^m  I ) )  ->  g : I --> B )
39 simplr 792 . . . . . . . . 9  |-  ( ( ( ( I  e.  Z  /\  S  e. 
CRing  /\  R  e.  (SubRing `  S ) )  /\  x  e.  I )  /\  g  e.  ( B  ^m  I ) )  ->  x  e.  I
)
4038, 39ffvelrnd 6360 . . . . . . . 8  |-  ( ( ( ( I  e.  Z  /\  S  e. 
CRing  /\  R  e.  (SubRing `  S ) )  /\  x  e.  I )  /\  g  e.  ( B  ^m  I ) )  ->  ( g `  x )  e.  B
)
41 eqid 2622 . . . . . . . 8  |-  ( g  e.  ( B  ^m  I )  |->  ( g `
 x ) )  =  ( g  e.  ( B  ^m  I
)  |->  ( g `  x ) )
4240, 41fmptd 6385 . . . . . . 7  |-  ( ( ( I  e.  Z  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  /\  x  e.  I )  ->  (
g  e.  ( B  ^m  I )  |->  ( g `  x ) ) : ( B  ^m  I ) --> B )
43 simpl2 1065 . . . . . . . 8  |-  ( ( ( I  e.  Z  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  /\  x  e.  I )  ->  S  e.  CRing )
445, 6, 11pwselbasb 16148 . . . . . . . 8  |-  ( ( S  e.  CRing  /\  ( B  ^m  I )  e. 
_V )  ->  (
( g  e.  ( B  ^m  I ) 
|->  ( g `  x
) )  e.  (
Base `  T )  <->  ( g  e.  ( B  ^m  I )  |->  ( g `  x ) ) : ( B  ^m  I ) --> B ) )
4543, 17, 44sylancl 694 . . . . . . 7  |-  ( ( ( I  e.  Z  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  /\  x  e.  I )  ->  (
( g  e.  ( B  ^m  I ) 
|->  ( g `  x
) )  e.  (
Base `  T )  <->  ( g  e.  ( B  ^m  I )  |->  ( g `  x ) ) : ( B  ^m  I ) --> B ) )
4642, 45mpbird 247 . . . . . 6  |-  ( ( ( I  e.  Z  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  /\  x  e.  I )  ->  (
g  e.  ( B  ^m  I )  |->  ( g `  x ) )  e.  ( Base `  T ) )
4746, 9fmptd 6385 . . . . 5  |-  ( ( I  e.  Z  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  Y :
I --> ( Base `  T
) )
482, 11, 7, 3, 13, 15, 19, 32, 47evlseu 19516 . . . 4  |-  ( ( I  e.  Z  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  E! m  e.  ( W RingHom  T )
( ( m  o.  A )  =  X  /\  ( m  o.  V )  =  Y ) )
49 riotacl2 6624 . . . 4  |-  ( E! m  e.  ( W RingHom  T ) ( ( m  o.  A )  =  X  /\  (
m  o.  V )  =  Y )  -> 
( iota_ m  e.  ( W RingHom  T ) ( ( m  o.  A )  =  X  /\  (
m  o.  V )  =  Y ) )  e.  { m  e.  ( W RingHom  T )  |  ( ( m  o.  A )  =  X  /\  ( m  o.  V )  =  Y ) } )
5048, 49syl 17 . . 3  |-  ( ( I  e.  Z  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  ( iota_ m  e.  ( W RingHom  T
) ( ( m  o.  A )  =  X  /\  ( m  o.  V )  =  Y ) )  e. 
{ m  e.  ( W RingHom  T )  |  ( ( m  o.  A
)  =  X  /\  ( m  o.  V
)  =  Y ) } )
5110, 50eqeltrd 2701 . 2  |-  ( ( I  e.  Z  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  Q  e.  { m  e.  ( W RingHom  T )  |  ( ( m  o.  A
)  =  X  /\  ( m  o.  V
)  =  Y ) } )
52 coeq1 5279 . . . . 5  |-  ( m  =  Q  ->  (
m  o.  A )  =  ( Q  o.  A ) )
5352eqeq1d 2624 . . . 4  |-  ( m  =  Q  ->  (
( m  o.  A
)  =  X  <->  ( Q  o.  A )  =  X ) )
54 coeq1 5279 . . . . 5  |-  ( m  =  Q  ->  (
m  o.  V )  =  ( Q  o.  V ) )
5554eqeq1d 2624 . . . 4  |-  ( m  =  Q  ->  (
( m  o.  V
)  =  Y  <->  ( Q  o.  V )  =  Y ) )
5653, 55anbi12d 747 . . 3  |-  ( m  =  Q  ->  (
( ( m  o.  A )  =  X  /\  ( m  o.  V )  =  Y )  <->  ( ( Q  o.  A )  =  X  /\  ( Q  o.  V )  =  Y ) ) )
5756elrab 3363 . 2  |-  ( Q  e.  { m  e.  ( W RingHom  T )  |  ( ( m  o.  A )  =  X  /\  ( m  o.  V )  =  Y ) }  <->  ( Q  e.  ( W RingHom  T )  /\  ( ( Q  o.  A )  =  X  /\  ( Q  o.  V )  =  Y ) ) )
5851, 57sylib 208 1  |-  ( ( I  e.  Z  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  ( Q  e.  ( W RingHom  T )  /\  ( ( Q  o.  A )  =  X  /\  ( Q  o.  V )  =  Y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E!wreu 2914   {crab 2916   _Vcvv 3200    C_ wss 3574   {csn 4177    |-> cmpt 4729    X. cxp 5112    |` cres 5116    o. ccom 5118   -->wf 5884   ` cfv 5888   iota_crio 6610  (class class class)co 6650    ^m cmap 7857   Basecbs 15857   ↾s cress 15858    ^s cpws 16107   Ringcrg 18547   CRingccrg 18548   RingHom crh 18712  SubRingcsubrg 18776  algSccascl 19311   mVar cmvr 19352   mPoly cmpl 19353   evalSub ces 19504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-gsum 16103  df-prds 16108  df-pws 16110  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-srg 18506  df-ring 18549  df-cring 18550  df-rnghom 18715  df-subrg 18778  df-lmod 18865  df-lss 18933  df-lsp 18972  df-assa 19312  df-asp 19313  df-ascl 19314  df-psr 19356  df-mvr 19357  df-mpl 19358  df-evls 19506
This theorem is referenced by:  evlsrhm  19521  evlssca  19522  evlsvar  19523
  Copyright terms: Public domain W3C validator