MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgsubm Structured version   Visualization version   Unicode version

Theorem subrgsubm 18793
Description: A subring is a submonoid of the multiplicative monoid. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypothesis
Ref Expression
subrgsubm.1  |-  M  =  (mulGrp `  R )
Assertion
Ref Expression
subrgsubm  |-  ( A  e.  (SubRing `  R
)  ->  A  e.  (SubMnd `  M ) )

Proof of Theorem subrgsubm
StepHypRef Expression
1 eqid 2622 . . 3  |-  ( Base `  R )  =  (
Base `  R )
21subrgss 18781 . 2  |-  ( A  e.  (SubRing `  R
)  ->  A  C_  ( Base `  R ) )
3 eqid 2622 . . 3  |-  ( 1r
`  R )  =  ( 1r `  R
)
43subrg1cl 18788 . 2  |-  ( A  e.  (SubRing `  R
)  ->  ( 1r `  R )  e.  A
)
5 subrgrcl 18785 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  R  e.  Ring )
6 eqid 2622 . . . . 5  |-  ( Rs  A )  =  ( Rs  A )
7 subrgsubm.1 . . . . 5  |-  M  =  (mulGrp `  R )
86, 7mgpress 18500 . . . 4  |-  ( ( R  e.  Ring  /\  A  e.  (SubRing `  R )
)  ->  ( Ms  A
)  =  (mulGrp `  ( Rs  A ) ) )
95, 8mpancom 703 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  ( Ms  A
)  =  (mulGrp `  ( Rs  A ) ) )
106subrgring 18783 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  ( Rs  A
)  e.  Ring )
11 eqid 2622 . . . . 5  |-  (mulGrp `  ( Rs  A ) )  =  (mulGrp `  ( Rs  A
) )
1211ringmgp 18553 . . . 4  |-  ( ( Rs  A )  e.  Ring  -> 
(mulGrp `  ( Rs  A
) )  e.  Mnd )
1310, 12syl 17 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  (mulGrp `  ( Rs  A ) )  e. 
Mnd )
149, 13eqeltrd 2701 . 2  |-  ( A  e.  (SubRing `  R
)  ->  ( Ms  A
)  e.  Mnd )
157ringmgp 18553 . . 3  |-  ( R  e.  Ring  ->  M  e. 
Mnd )
167, 1mgpbas 18495 . . . 4  |-  ( Base `  R )  =  (
Base `  M )
177, 3ringidval 18503 . . . 4  |-  ( 1r
`  R )  =  ( 0g `  M
)
18 eqid 2622 . . . 4  |-  ( Ms  A )  =  ( Ms  A )
1916, 17, 18issubm2 17348 . . 3  |-  ( M  e.  Mnd  ->  ( A  e.  (SubMnd `  M
)  <->  ( A  C_  ( Base `  R )  /\  ( 1r `  R
)  e.  A  /\  ( Ms  A )  e.  Mnd ) ) )
205, 15, 193syl 18 . 2  |-  ( A  e.  (SubRing `  R
)  ->  ( A  e.  (SubMnd `  M )  <->  ( A  C_  ( Base `  R )  /\  ( 1r `  R )  e.  A  /\  ( Ms  A )  e.  Mnd )
) )
212, 4, 14, 20mpbir3and 1245 1  |-  ( A  e.  (SubRing `  R
)  ->  A  e.  (SubMnd `  M ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ w3a 1037    = wceq 1483    e. wcel 1990    C_ wss 3574   ` cfv 5888  (class class class)co 6650   Basecbs 15857   ↾s cress 15858   Mndcmnd 17294  SubMndcsubmnd 17334  mulGrpcmgp 18489   1rcur 18501   Ringcrg 18547  SubRingcsubrg 18776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mgp 18490  df-ur 18502  df-ring 18549  df-subrg 18778
This theorem is referenced by:  resrhm  18809  rhmima  18811  mplbas2  19470  zrhpsgnmhm  19930  m2cpmmhm  20550  cmodscexp  22921  plypf1  23968  wilthlem2  24795  wilthlem3  24796  lgsqrlem1  25071  lgseisenlem4  25103  dchrisum0flblem1  25197
  Copyright terms: Public domain W3C validator