MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restcls Structured version   Visualization version   Unicode version

Theorem restcls 20985
Description: A closure in a subspace topology. (Contributed by Jeff Hankins, 22-Jan-2010.) (Revised by Mario Carneiro, 15-Dec-2013.)
Hypotheses
Ref Expression
restcls.1  |-  X  = 
U. J
restcls.2  |-  K  =  ( Jt  Y )
Assertion
Ref Expression
restcls  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( cls `  K
) `  S )  =  ( ( ( cls `  J ) `
 S )  i^i 
Y ) )

Proof of Theorem restcls
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simp1 1061 . . . . . 6  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  J  e.  Top )
2 sstr 3611 . . . . . . . 8  |-  ( ( S  C_  Y  /\  Y  C_  X )  ->  S  C_  X )
32ancoms 469 . . . . . . 7  |-  ( ( Y  C_  X  /\  S  C_  Y )  ->  S  C_  X )
433adant1 1079 . . . . . 6  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  S  C_  X )
5 restcls.1 . . . . . . 7  |-  X  = 
U. J
65clscld 20851 . . . . . 6  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  e.  ( Clsd `  J
) )
71, 4, 6syl2anc 693 . . . . 5  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( cls `  J
) `  S )  e.  ( Clsd `  J
) )
8 eqid 2622 . . . . 5  |-  ( ( ( cls `  J
) `  S )  i^i  Y )  =  ( ( ( cls `  J
) `  S )  i^i  Y )
9 ineq1 3807 . . . . . . 7  |-  ( x  =  ( ( cls `  J ) `  S
)  ->  ( x  i^i  Y )  =  ( ( ( cls `  J
) `  S )  i^i  Y ) )
109eqeq2d 2632 . . . . . 6  |-  ( x  =  ( ( cls `  J ) `  S
)  ->  ( (
( ( cls `  J
) `  S )  i^i  Y )  =  ( x  i^i  Y )  <-> 
( ( ( cls `  J ) `  S
)  i^i  Y )  =  ( ( ( cls `  J ) `
 S )  i^i 
Y ) ) )
1110rspcev 3309 . . . . 5  |-  ( ( ( ( cls `  J
) `  S )  e.  ( Clsd `  J
)  /\  ( (
( cls `  J
) `  S )  i^i  Y )  =  ( ( ( cls `  J
) `  S )  i^i  Y ) )  ->  E. x  e.  ( Clsd `  J ) ( ( ( cls `  J
) `  S )  i^i  Y )  =  ( x  i^i  Y ) )
127, 8, 11sylancl 694 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  E. x  e.  ( Clsd `  J
) ( ( ( cls `  J ) `
 S )  i^i 
Y )  =  ( x  i^i  Y ) )
13 restcls.2 . . . . . . 7  |-  K  =  ( Jt  Y )
1413fveq2i 6194 . . . . . 6  |-  ( Clsd `  K )  =  (
Clsd `  ( Jt  Y
) )
1514eleq2i 2693 . . . . 5  |-  ( ( ( ( cls `  J
) `  S )  i^i  Y )  e.  (
Clsd `  K )  <->  ( ( ( cls `  J
) `  S )  i^i  Y )  e.  (
Clsd `  ( Jt  Y
) ) )
165restcld 20976 . . . . . 6  |-  ( ( J  e.  Top  /\  Y  C_  X )  -> 
( ( ( ( cls `  J ) `
 S )  i^i 
Y )  e.  (
Clsd `  ( Jt  Y
) )  <->  E. x  e.  ( Clsd `  J
) ( ( ( cls `  J ) `
 S )  i^i 
Y )  =  ( x  i^i  Y ) ) )
17163adant3 1081 . . . . 5  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( ( ( cls `  J ) `  S
)  i^i  Y )  e.  ( Clsd `  ( Jt  Y ) )  <->  E. x  e.  ( Clsd `  J
) ( ( ( cls `  J ) `
 S )  i^i 
Y )  =  ( x  i^i  Y ) ) )
1815, 17syl5bb 272 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( ( ( cls `  J ) `  S
)  i^i  Y )  e.  ( Clsd `  K
)  <->  E. x  e.  (
Clsd `  J )
( ( ( cls `  J ) `  S
)  i^i  Y )  =  ( x  i^i 
Y ) ) )
1912, 18mpbird 247 . . 3  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( ( cls `  J
) `  S )  i^i  Y )  e.  (
Clsd `  K )
)
205sscls 20860 . . . . 5  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  S  C_  ( ( cls `  J ) `  S
) )
211, 4, 20syl2anc 693 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  S  C_  ( ( cls `  J
) `  S )
)
22 simp3 1063 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  S  C_  Y )
2321, 22ssind 3837 . . 3  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  S  C_  ( ( ( cls `  J ) `  S
)  i^i  Y )
)
24 eqid 2622 . . . 4  |-  U. K  =  U. K
2524clsss2 20876 . . 3  |-  ( ( ( ( ( cls `  J ) `  S
)  i^i  Y )  e.  ( Clsd `  K
)  /\  S  C_  (
( ( cls `  J
) `  S )  i^i  Y ) )  -> 
( ( cls `  K
) `  S )  C_  ( ( ( cls `  J ) `  S
)  i^i  Y )
)
2619, 23, 25syl2anc 693 . 2  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( cls `  K
) `  S )  C_  ( ( ( cls `  J ) `  S
)  i^i  Y )
)
2713fveq2i 6194 . . . . . 6  |-  ( cls `  K )  =  ( cls `  ( Jt  Y ) )
2827fveq1i 6192 . . . . 5  |-  ( ( cls `  K ) `
 S )  =  ( ( cls `  ( Jt  Y ) ) `  S )
29 id 22 . . . . . . . . 9  |-  ( Y 
C_  X  ->  Y  C_  X )
305topopn 20711 . . . . . . . . 9  |-  ( J  e.  Top  ->  X  e.  J )
31 ssexg 4804 . . . . . . . . 9  |-  ( ( Y  C_  X  /\  X  e.  J )  ->  Y  e.  _V )
3229, 30, 31syl2anr 495 . . . . . . . 8  |-  ( ( J  e.  Top  /\  Y  C_  X )  ->  Y  e.  _V )
33 resttop 20964 . . . . . . . 8  |-  ( ( J  e.  Top  /\  Y  e.  _V )  ->  ( Jt  Y )  e.  Top )
3432, 33syldan 487 . . . . . . 7  |-  ( ( J  e.  Top  /\  Y  C_  X )  -> 
( Jt  Y )  e.  Top )
35343adant3 1081 . . . . . 6  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  ( Jt  Y )  e.  Top )
365restuni 20966 . . . . . . . 8  |-  ( ( J  e.  Top  /\  Y  C_  X )  ->  Y  =  U. ( Jt  Y ) )
37363adant3 1081 . . . . . . 7  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  Y  =  U. ( Jt  Y ) )
3822, 37sseqtrd 3641 . . . . . 6  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  S  C_ 
U. ( Jt  Y ) )
39 eqid 2622 . . . . . . 7  |-  U. ( Jt  Y )  =  U. ( Jt  Y )
4039clscld 20851 . . . . . 6  |-  ( ( ( Jt  Y )  e.  Top  /\  S  C_  U. ( Jt  Y ) )  -> 
( ( cls `  ( Jt  Y ) ) `  S )  e.  (
Clsd `  ( Jt  Y
) ) )
4135, 38, 40syl2anc 693 . . . . 5  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( cls `  ( Jt  Y ) ) `  S )  e.  (
Clsd `  ( Jt  Y
) ) )
4228, 41syl5eqel 2705 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( cls `  K
) `  S )  e.  ( Clsd `  ( Jt  Y ) ) )
435restcld 20976 . . . . 5  |-  ( ( J  e.  Top  /\  Y  C_  X )  -> 
( ( ( cls `  K ) `  S
)  e.  ( Clsd `  ( Jt  Y ) )  <->  E. x  e.  ( Clsd `  J
) ( ( cls `  K ) `  S
)  =  ( x  i^i  Y ) ) )
44433adant3 1081 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( ( cls `  K
) `  S )  e.  ( Clsd `  ( Jt  Y ) )  <->  E. x  e.  ( Clsd `  J
) ( ( cls `  K ) `  S
)  =  ( x  i^i  Y ) ) )
4542, 44mpbid 222 . . 3  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  E. x  e.  ( Clsd `  J
) ( ( cls `  K ) `  S
)  =  ( x  i^i  Y ) )
4613, 34syl5eqel 2705 . . . . . . . 8  |-  ( ( J  e.  Top  /\  Y  C_  X )  ->  K  e.  Top )
47463adant3 1081 . . . . . . 7  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  K  e.  Top )
4813unieqi 4445 . . . . . . . . 9  |-  U. K  =  U. ( Jt  Y )
4948eqcomi 2631 . . . . . . . 8  |-  U. ( Jt  Y )  =  U. K
5049sscls 20860 . . . . . . 7  |-  ( ( K  e.  Top  /\  S  C_  U. ( Jt  Y ) )  ->  S  C_  ( ( cls `  K
) `  S )
)
5147, 38, 50syl2anc 693 . . . . . 6  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  S  C_  ( ( cls `  K
) `  S )
)
5251adantr 481 . . . . 5  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( x  e.  ( Clsd `  J )  /\  ( ( cls `  K
) `  S )  =  ( x  i^i 
Y ) ) )  ->  S  C_  (
( cls `  K
) `  S )
)
53 inss1 3833 . . . . . . 7  |-  ( x  i^i  Y )  C_  x
54 sseq1 3626 . . . . . . 7  |-  ( ( ( cls `  K
) `  S )  =  ( x  i^i 
Y )  ->  (
( ( cls `  K
) `  S )  C_  x  <->  ( x  i^i 
Y )  C_  x
) )
5553, 54mpbiri 248 . . . . . 6  |-  ( ( ( cls `  K
) `  S )  =  ( x  i^i 
Y )  ->  (
( cls `  K
) `  S )  C_  x )
5655ad2antll 765 . . . . 5  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( x  e.  ( Clsd `  J )  /\  ( ( cls `  K
) `  S )  =  ( x  i^i 
Y ) ) )  ->  ( ( cls `  K ) `  S
)  C_  x )
5752, 56sstrd 3613 . . . 4  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( x  e.  ( Clsd `  J )  /\  ( ( cls `  K
) `  S )  =  ( x  i^i 
Y ) ) )  ->  S  C_  x
)
585clsss2 20876 . . . . . . . . . 10  |-  ( ( x  e.  ( Clsd `  J )  /\  S  C_  x )  ->  (
( cls `  J
) `  S )  C_  x )
5958adantl 482 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( x  e.  ( Clsd `  J )  /\  S  C_  x ) )  ->  ( ( cls `  J ) `  S
)  C_  x )
60 ssrin 3838 . . . . . . . . 9  |-  ( ( ( cls `  J
) `  S )  C_  x  ->  ( (
( cls `  J
) `  S )  i^i  Y )  C_  (
x  i^i  Y )
)
6159, 60syl 17 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( x  e.  ( Clsd `  J )  /\  S  C_  x ) )  ->  ( ( ( cls `  J ) `
 S )  i^i 
Y )  C_  (
x  i^i  Y )
)
62 sseq2 3627 . . . . . . . 8  |-  ( ( ( cls `  K
) `  S )  =  ( x  i^i 
Y )  ->  (
( ( ( cls `  J ) `  S
)  i^i  Y )  C_  ( ( cls `  K
) `  S )  <->  ( ( ( cls `  J
) `  S )  i^i  Y )  C_  (
x  i^i  Y )
) )
6361, 62syl5ibrcom 237 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( x  e.  ( Clsd `  J )  /\  S  C_  x ) )  ->  ( ( ( cls `  K ) `
 S )  =  ( x  i^i  Y
)  ->  ( (
( cls `  J
) `  S )  i^i  Y )  C_  (
( cls `  K
) `  S )
) )
6463expr 643 . . . . . 6  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  x  e.  ( Clsd `  J ) )  -> 
( S  C_  x  ->  ( ( ( cls `  K ) `  S
)  =  ( x  i^i  Y )  -> 
( ( ( cls `  J ) `  S
)  i^i  Y )  C_  ( ( cls `  K
) `  S )
) ) )
6564com23 86 . . . . 5  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  x  e.  ( Clsd `  J ) )  -> 
( ( ( cls `  K ) `  S
)  =  ( x  i^i  Y )  -> 
( S  C_  x  ->  ( ( ( cls `  J ) `  S
)  i^i  Y )  C_  ( ( cls `  K
) `  S )
) ) )
6665impr 649 . . . 4  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( x  e.  ( Clsd `  J )  /\  ( ( cls `  K
) `  S )  =  ( x  i^i 
Y ) ) )  ->  ( S  C_  x  ->  ( ( ( cls `  J ) `
 S )  i^i 
Y )  C_  (
( cls `  K
) `  S )
) )
6757, 66mpd 15 . . 3  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( x  e.  ( Clsd `  J )  /\  ( ( cls `  K
) `  S )  =  ( x  i^i 
Y ) ) )  ->  ( ( ( cls `  J ) `
 S )  i^i 
Y )  C_  (
( cls `  K
) `  S )
)
6845, 67rexlimddv 3035 . 2  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( ( cls `  J
) `  S )  i^i  Y )  C_  (
( cls `  K
) `  S )
)
6926, 68eqssd 3620 1  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( cls `  K
) `  S )  =  ( ( ( cls `  J ) `
 S )  i^i 
Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   U.cuni 4436   ` cfv 5888  (class class class)co 6650   ↾t crest 16081   Topctop 20698   Clsdccld 20820   clsccl 20822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-er 7742  df-en 7956  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-cls 20825
This theorem is referenced by:  restlp  20987  resscdrg  23154
  Copyright terms: Public domain W3C validator