Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reuccatpfxs1lem Structured version   Visualization version   Unicode version

Theorem reuccatpfxs1lem 41433
Description: Lemma for reuccatpfxs1 41434. Could replace reuccats1lem 13479. (Contributed by AV, 9-May-2020.)
Assertion
Ref Expression
reuccatpfxs1lem  |-  ( ( ( W  e. Word  V  /\  U  e.  X
)  /\  A. s  e.  V  ( ( W ++  <" s "> )  e.  X  ->  S  =  s )  /\  A. x  e.  X  ( x  e. Word  V  /\  ( # `  x
)  =  ( (
# `  W )  +  1 ) ) )  ->  ( W  =  ( U prefix  ( # `
 W ) )  ->  U  =  ( W ++  <" S "> ) ) )
Distinct variable groups:    S, s    x, U    V, s, x    W, s, x    X, s, x
Allowed substitution hints:    S( x)    U( s)

Proof of Theorem reuccatpfxs1lem
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 eleq1 2689 . . . . . . 7  |-  ( x  =  U  ->  (
x  e. Word  V  <->  U  e. Word  V ) )
2 fveq2 6191 . . . . . . . 8  |-  ( x  =  U  ->  ( # `
 x )  =  ( # `  U
) )
32eqeq1d 2624 . . . . . . 7  |-  ( x  =  U  ->  (
( # `  x )  =  ( ( # `  W )  +  1 )  <->  ( # `  U
)  =  ( (
# `  W )  +  1 ) ) )
41, 3anbi12d 747 . . . . . 6  |-  ( x  =  U  ->  (
( x  e. Word  V  /\  ( # `  x
)  =  ( (
# `  W )  +  1 ) )  <-> 
( U  e. Word  V  /\  ( # `  U
)  =  ( (
# `  W )  +  1 ) ) ) )
54rspcv 3305 . . . . 5  |-  ( U  e.  X  ->  ( A. x  e.  X  ( x  e. Word  V  /\  ( # `  x )  =  ( ( # `  W )  +  1 ) )  ->  ( U  e. Word  V  /\  ( # `
 U )  =  ( ( # `  W
)  +  1 ) ) ) )
65adantl 482 . . . 4  |-  ( ( W  e. Word  V  /\  U  e.  X )  ->  ( A. x  e.  X  ( x  e. Word  V  /\  ( # `  x
)  =  ( (
# `  W )  +  1 ) )  ->  ( U  e. Word  V  /\  ( # `  U
)  =  ( (
# `  W )  +  1 ) ) ) )
7 simpl 473 . . . . . . . . 9  |-  ( ( W  e. Word  V  /\  U  e.  X )  ->  W  e. Word  V )
87adantr 481 . . . . . . . 8  |-  ( ( ( W  e. Word  V  /\  U  e.  X
)  /\  ( U  e. Word  V  /\  ( # `  U )  =  ( ( # `  W
)  +  1 ) ) )  ->  W  e. Word  V )
9 simpl 473 . . . . . . . . 9  |-  ( ( U  e. Word  V  /\  ( # `  U )  =  ( ( # `  W )  +  1 ) )  ->  U  e. Word  V )
109adantl 482 . . . . . . . 8  |-  ( ( ( W  e. Word  V  /\  U  e.  X
)  /\  ( U  e. Word  V  /\  ( # `  U )  =  ( ( # `  W
)  +  1 ) ) )  ->  U  e. Word  V )
11 simprr 796 . . . . . . . 8  |-  ( ( ( W  e. Word  V  /\  U  e.  X
)  /\  ( U  e. Word  V  /\  ( # `  U )  =  ( ( # `  W
)  +  1 ) ) )  ->  ( # `
 U )  =  ( ( # `  W
)  +  1 ) )
12 ccats1pfxeqrex 41422 . . . . . . . 8  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  ( # `
 U )  =  ( ( # `  W
)  +  1 ) )  ->  ( W  =  ( U prefix  ( # `
 W ) )  ->  E. u  e.  V  U  =  ( W ++  <" u "> ) ) )
138, 10, 11, 12syl3anc 1326 . . . . . . 7  |-  ( ( ( W  e. Word  V  /\  U  e.  X
)  /\  ( U  e. Word  V  /\  ( # `  U )  =  ( ( # `  W
)  +  1 ) ) )  ->  ( W  =  ( U prefix  (
# `  W )
)  ->  E. u  e.  V  U  =  ( W ++  <" u "> ) ) )
14 s1eq 13380 . . . . . . . . . . . . . . . 16  |-  ( s  =  u  ->  <" s ">  =  <" u "> )
1514oveq2d 6666 . . . . . . . . . . . . . . 15  |-  ( s  =  u  ->  ( W ++  <" s "> )  =  ( W ++  <" u "> ) )
1615eleq1d 2686 . . . . . . . . . . . . . 14  |-  ( s  =  u  ->  (
( W ++  <" s "> )  e.  X  <->  ( W ++  <" u "> )  e.  X
) )
17 eqeq2 2633 . . . . . . . . . . . . . 14  |-  ( s  =  u  ->  ( S  =  s  <->  S  =  u ) )
1816, 17imbi12d 334 . . . . . . . . . . . . 13  |-  ( s  =  u  ->  (
( ( W ++  <" s "> )  e.  X  ->  S  =  s )  <->  ( ( W ++  <" u "> )  e.  X  ->  S  =  u ) ) )
1918rspcv 3305 . . . . . . . . . . . 12  |-  ( u  e.  V  ->  ( A. s  e.  V  ( ( W ++  <" s "> )  e.  X  ->  S  =  s )  ->  (
( W ++  <" u "> )  e.  X  ->  S  =  u ) ) )
20 eleq1 2689 . . . . . . . . . . . . . 14  |-  ( U  =  ( W ++  <" u "> )  ->  ( U  e.  X  <->  ( W ++  <" u "> )  e.  X
) )
21 id 22 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( W ++  <" u "> )  e.  X  ->  S  =  u )  ->  ( ( W ++ 
<" u "> )  e.  X  ->  S  =  u ) )
2221imp 445 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( W ++  <" u "> )  e.  X  ->  S  =  u )  /\  ( W ++  <" u "> )  e.  X
)  ->  S  =  u )
2322eqcomd 2628 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( W ++  <" u "> )  e.  X  ->  S  =  u )  /\  ( W ++  <" u "> )  e.  X
)  ->  u  =  S )
2423s1eqd 13381 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( W ++  <" u "> )  e.  X  ->  S  =  u )  /\  ( W ++  <" u "> )  e.  X
)  ->  <" u ">  =  <" S "> )
2524oveq2d 6666 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( W ++  <" u "> )  e.  X  ->  S  =  u )  /\  ( W ++  <" u "> )  e.  X
)  ->  ( W ++  <" u "> )  =  ( W ++  <" S "> ) )
2625eqeq2d 2632 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( W ++  <" u "> )  e.  X  ->  S  =  u )  /\  ( W ++  <" u "> )  e.  X
)  ->  ( U  =  ( W ++  <" u "> )  <->  U  =  ( W ++  <" S "> )
) )
2726biimpd 219 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( W ++  <" u "> )  e.  X  ->  S  =  u )  /\  ( W ++  <" u "> )  e.  X
)  ->  ( U  =  ( W ++  <" u "> )  ->  U  =  ( W ++ 
<" S "> ) ) )
2827ex 450 . . . . . . . . . . . . . . 15  |-  ( ( ( W ++  <" u "> )  e.  X  ->  S  =  u )  ->  ( ( W ++ 
<" u "> )  e.  X  ->  ( U  =  ( W ++ 
<" u "> )  ->  U  =  ( W ++  <" S "> ) ) ) )
2928com13 88 . . . . . . . . . . . . . 14  |-  ( U  =  ( W ++  <" u "> )  ->  ( ( W ++  <" u "> )  e.  X  ->  ( ( ( W ++  <" u "> )  e.  X  ->  S  =  u )  ->  U  =  ( W ++  <" S "> ) ) ) )
3020, 29sylbid 230 . . . . . . . . . . . . 13  |-  ( U  =  ( W ++  <" u "> )  ->  ( U  e.  X  ->  ( ( ( W ++ 
<" u "> )  e.  X  ->  S  =  u )  ->  U  =  ( W ++  <" S "> ) ) ) )
3130com3l 89 . . . . . . . . . . . 12  |-  ( U  e.  X  ->  (
( ( W ++  <" u "> )  e.  X  ->  S  =  u )  ->  ( U  =  ( W ++  <" u "> )  ->  U  =  ( W ++  <" S "> ) ) ) )
3219, 31sylan9r 690 . . . . . . . . . . 11  |-  ( ( U  e.  X  /\  u  e.  V )  ->  ( A. s  e.  V  ( ( W ++ 
<" s "> )  e.  X  ->  S  =  s )  -> 
( U  =  ( W ++  <" u "> )  ->  U  =  ( W ++  <" S "> )
) ) )
3332com23 86 . . . . . . . . . 10  |-  ( ( U  e.  X  /\  u  e.  V )  ->  ( U  =  ( W ++  <" u "> )  ->  ( A. s  e.  V  ( ( W ++  <" s "> )  e.  X  ->  S  =  s )  ->  U  =  ( W ++  <" S "> )
) ) )
3433rexlimdva 3031 . . . . . . . . 9  |-  ( U  e.  X  ->  ( E. u  e.  V  U  =  ( W ++  <" u "> )  ->  ( A. s  e.  V  ( ( W ++  <" s "> )  e.  X  ->  S  =  s )  ->  U  =  ( W ++  <" S "> ) ) ) )
3534adantl 482 . . . . . . . 8  |-  ( ( W  e. Word  V  /\  U  e.  X )  ->  ( E. u  e.  V  U  =  ( W ++  <" u "> )  ->  ( A. s  e.  V  ( ( W ++  <" s "> )  e.  X  ->  S  =  s )  ->  U  =  ( W ++  <" S "> )
) ) )
3635adantr 481 . . . . . . 7  |-  ( ( ( W  e. Word  V  /\  U  e.  X
)  /\  ( U  e. Word  V  /\  ( # `  U )  =  ( ( # `  W
)  +  1 ) ) )  ->  ( E. u  e.  V  U  =  ( W ++  <" u "> )  ->  ( A. s  e.  V  ( ( W ++  <" s "> )  e.  X  ->  S  =  s )  ->  U  =  ( W ++  <" S "> ) ) ) )
3713, 36syld 47 . . . . . 6  |-  ( ( ( W  e. Word  V  /\  U  e.  X
)  /\  ( U  e. Word  V  /\  ( # `  U )  =  ( ( # `  W
)  +  1 ) ) )  ->  ( W  =  ( U prefix  (
# `  W )
)  ->  ( A. s  e.  V  (
( W ++  <" s "> )  e.  X  ->  S  =  s )  ->  U  =  ( W ++  <" S "> ) ) ) )
3837com23 86 . . . . 5  |-  ( ( ( W  e. Word  V  /\  U  e.  X
)  /\  ( U  e. Word  V  /\  ( # `  U )  =  ( ( # `  W
)  +  1 ) ) )  ->  ( A. s  e.  V  ( ( W ++  <" s "> )  e.  X  ->  S  =  s )  ->  ( W  =  ( U prefix  (
# `  W )
)  ->  U  =  ( W ++  <" S "> ) ) ) )
3938ex 450 . . . 4  |-  ( ( W  e. Word  V  /\  U  e.  X )  ->  ( ( U  e. Word  V  /\  ( # `  U
)  =  ( (
# `  W )  +  1 ) )  ->  ( A. s  e.  V  ( ( W ++  <" s "> )  e.  X  ->  S  =  s )  ->  ( W  =  ( U prefix  ( # `  W ) )  ->  U  =  ( W ++  <" S "> ) ) ) ) )
406, 39syld 47 . . 3  |-  ( ( W  e. Word  V  /\  U  e.  X )  ->  ( A. x  e.  X  ( x  e. Word  V  /\  ( # `  x
)  =  ( (
# `  W )  +  1 ) )  ->  ( A. s  e.  V  ( ( W ++  <" s "> )  e.  X  ->  S  =  s )  ->  ( W  =  ( U prefix  ( # `  W ) )  ->  U  =  ( W ++  <" S "> ) ) ) ) )
4140com23 86 . 2  |-  ( ( W  e. Word  V  /\  U  e.  X )  ->  ( A. s  e.  V  ( ( W ++ 
<" s "> )  e.  X  ->  S  =  s )  -> 
( A. x  e.  X  ( x  e. Word  V  /\  ( # `  x
)  =  ( (
# `  W )  +  1 ) )  ->  ( W  =  ( U prefix  ( # `  W ) )  ->  U  =  ( W ++  <" S "> ) ) ) ) )
42413imp 1256 1  |-  ( ( ( W  e. Word  V  /\  U  e.  X
)  /\  A. s  e.  V  ( ( W ++  <" s "> )  e.  X  ->  S  =  s )  /\  A. x  e.  X  ( x  e. Word  V  /\  ( # `  x
)  =  ( (
# `  W )  +  1 ) ) )  ->  ( W  =  ( U prefix  ( # `
 W ) )  ->  U  =  ( W ++  <" S "> ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   ` cfv 5888  (class class class)co 6650   1c1 9937    + caddc 9939   #chash 13117  Word cword 13291   ++ cconcat 13293   <"cs1 13294   prefix cpfx 41381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-pfx 41382
This theorem is referenced by:  reuccatpfxs1  41434
  Copyright terms: Public domain W3C validator