Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmdvdsr Structured version   Visualization version   Unicode version

Theorem rhmdvdsr 29818
Description: A ring homomorphism preserves the divisibility relation. (Contributed by Thierry Arnoux, 22-Oct-2017.)
Hypotheses
Ref Expression
rhmdvdsr.x  |-  X  =  ( Base `  R
)
rhmdvdsr.m  |-  .||  =  (
||r `  R )
rhmdvdsr.n  |-  ./  =  ( ||r `
 S )
Assertion
Ref Expression
rhmdvdsr  |-  ( ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  /\  A  .|| 
B )  ->  ( F `  A )  ./  ( F `  B
) )

Proof of Theorem rhmdvdsr
Dummy variables  y 
c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1064 . . 3  |-  ( ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  /\  A  .|| 
B )  ->  F  e.  ( R RingHom  S )
)
2 simpl2 1065 . . 3  |-  ( ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  /\  A  .|| 
B )  ->  A  e.  X )
3 rhmdvdsr.x . . . . 5  |-  X  =  ( Base `  R
)
4 eqid 2622 . . . . 5  |-  ( Base `  S )  =  (
Base `  S )
53, 4rhmf 18726 . . . 4  |-  ( F  e.  ( R RingHom  S
)  ->  F : X
--> ( Base `  S
) )
65ffvelrnda 6359 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  X )  ->  ( F `  A )  e.  ( Base `  S
) )
71, 2, 6syl2anc 693 . 2  |-  ( ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  /\  A  .|| 
B )  ->  ( F `  A )  e.  ( Base `  S
) )
8 simpll1 1100 . . . . . 6  |-  ( ( ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X
)  /\  A  .||  B )  /\  c  e.  X
)  ->  F  e.  ( R RingHom  S ) )
9 simpr 477 . . . . . 6  |-  ( ( ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X
)  /\  A  .||  B )  /\  c  e.  X
)  ->  c  e.  X )
105ffvelrnda 6359 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  c  e.  X )  ->  ( F `  c )  e.  ( Base `  S
) )
118, 9, 10syl2anc 693 . . . . 5  |-  ( ( ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X
)  /\  A  .||  B )  /\  c  e.  X
)  ->  ( F `  c )  e.  (
Base `  S )
)
1211ralrimiva 2966 . . . 4  |-  ( ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  /\  A  .|| 
B )  ->  A. c  e.  X  ( F `  c )  e.  (
Base `  S )
)
132adantr 481 . . . . . . 7  |-  ( ( ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X
)  /\  A  .||  B )  /\  c  e.  X
)  ->  A  e.  X )
14 eqid 2622 . . . . . . . 8  |-  ( .r
`  R )  =  ( .r `  R
)
15 eqid 2622 . . . . . . . 8  |-  ( .r
`  S )  =  ( .r `  S
)
163, 14, 15rhmmul 18727 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  c  e.  X  /\  A  e.  X )  ->  ( F `  ( c
( .r `  R
) A ) )  =  ( ( F `
 c ) ( .r `  S ) ( F `  A
) ) )
178, 9, 13, 16syl3anc 1326 . . . . . 6  |-  ( ( ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X
)  /\  A  .||  B )  /\  c  e.  X
)  ->  ( F `  ( c ( .r
`  R ) A ) )  =  ( ( F `  c
) ( .r `  S ) ( F `
 A ) ) )
1817ralrimiva 2966 . . . . 5  |-  ( ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  /\  A  .|| 
B )  ->  A. c  e.  X  ( F `  ( c ( .r
`  R ) A ) )  =  ( ( F `  c
) ( .r `  S ) ( F `
 A ) ) )
19 simpr 477 . . . . . 6  |-  ( ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  /\  A  .|| 
B )  ->  A  .|| 
B )
20 rhmdvdsr.m . . . . . . . 8  |-  .||  =  (
||r `  R )
213, 20, 14dvdsr2 18647 . . . . . . 7  |-  ( A  e.  X  ->  ( A  .||  B  <->  E. c  e.  X  ( c
( .r `  R
) A )  =  B ) )
2221biimpac 503 . . . . . 6  |-  ( ( A  .||  B  /\  A  e.  X )  ->  E. c  e.  X  ( c ( .r
`  R ) A )  =  B )
2319, 2, 22syl2anc 693 . . . . 5  |-  ( ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  /\  A  .|| 
B )  ->  E. c  e.  X  ( c
( .r `  R
) A )  =  B )
24 r19.29 3072 . . . . . 6  |-  ( ( A. c  e.  X  ( F `  ( c ( .r `  R
) A ) )  =  ( ( F `
 c ) ( .r `  S ) ( F `  A
) )  /\  E. c  e.  X  (
c ( .r `  R ) A )  =  B )  ->  E. c  e.  X  ( ( F `  ( c ( .r
`  R ) A ) )  =  ( ( F `  c
) ( .r `  S ) ( F `
 A ) )  /\  ( c ( .r `  R ) A )  =  B ) )
25 simpl 473 . . . . . . . 8  |-  ( ( ( F `  (
c ( .r `  R ) A ) )  =  ( ( F `  c ) ( .r `  S
) ( F `  A ) )  /\  ( c ( .r
`  R ) A )  =  B )  ->  ( F `  ( c ( .r
`  R ) A ) )  =  ( ( F `  c
) ( .r `  S ) ( F `
 A ) ) )
26 simpr 477 . . . . . . . . 9  |-  ( ( ( F `  (
c ( .r `  R ) A ) )  =  ( ( F `  c ) ( .r `  S
) ( F `  A ) )  /\  ( c ( .r
`  R ) A )  =  B )  ->  ( c ( .r `  R ) A )  =  B )
2726fveq2d 6195 . . . . . . . 8  |-  ( ( ( F `  (
c ( .r `  R ) A ) )  =  ( ( F `  c ) ( .r `  S
) ( F `  A ) )  /\  ( c ( .r
`  R ) A )  =  B )  ->  ( F `  ( c ( .r
`  R ) A ) )  =  ( F `  B ) )
2825, 27eqtr3d 2658 . . . . . . 7  |-  ( ( ( F `  (
c ( .r `  R ) A ) )  =  ( ( F `  c ) ( .r `  S
) ( F `  A ) )  /\  ( c ( .r
`  R ) A )  =  B )  ->  ( ( F `
 c ) ( .r `  S ) ( F `  A
) )  =  ( F `  B ) )
2928reximi 3011 . . . . . 6  |-  ( E. c  e.  X  ( ( F `  (
c ( .r `  R ) A ) )  =  ( ( F `  c ) ( .r `  S
) ( F `  A ) )  /\  ( c ( .r
`  R ) A )  =  B )  ->  E. c  e.  X  ( ( F `  c ) ( .r
`  S ) ( F `  A ) )  =  ( F `
 B ) )
3024, 29syl 17 . . . . 5  |-  ( ( A. c  e.  X  ( F `  ( c ( .r `  R
) A ) )  =  ( ( F `
 c ) ( .r `  S ) ( F `  A
) )  /\  E. c  e.  X  (
c ( .r `  R ) A )  =  B )  ->  E. c  e.  X  ( ( F `  c ) ( .r
`  S ) ( F `  A ) )  =  ( F `
 B ) )
3118, 23, 30syl2anc 693 . . . 4  |-  ( ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  /\  A  .|| 
B )  ->  E. c  e.  X  ( ( F `  c )
( .r `  S
) ( F `  A ) )  =  ( F `  B
) )
32 r19.29 3072 . . . 4  |-  ( ( A. c  e.  X  ( F `  c )  e.  ( Base `  S
)  /\  E. c  e.  X  ( ( F `  c )
( .r `  S
) ( F `  A ) )  =  ( F `  B
) )  ->  E. c  e.  X  ( ( F `  c )  e.  ( Base `  S
)  /\  ( ( F `  c )
( .r `  S
) ( F `  A ) )  =  ( F `  B
) ) )
3312, 31, 32syl2anc 693 . . 3  |-  ( ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  /\  A  .|| 
B )  ->  E. c  e.  X  ( ( F `  c )  e.  ( Base `  S
)  /\  ( ( F `  c )
( .r `  S
) ( F `  A ) )  =  ( F `  B
) ) )
34 oveq1 6657 . . . . . 6  |-  ( y  =  ( F `  c )  ->  (
y ( .r `  S ) ( F `
 A ) )  =  ( ( F `
 c ) ( .r `  S ) ( F `  A
) ) )
3534eqeq1d 2624 . . . . 5  |-  ( y  =  ( F `  c )  ->  (
( y ( .r
`  S ) ( F `  A ) )  =  ( F `
 B )  <->  ( ( F `  c )
( .r `  S
) ( F `  A ) )  =  ( F `  B
) ) )
3635rspcev 3309 . . . 4  |-  ( ( ( F `  c
)  e.  ( Base `  S )  /\  (
( F `  c
) ( .r `  S ) ( F `
 A ) )  =  ( F `  B ) )  ->  E. y  e.  ( Base `  S ) ( y ( .r `  S ) ( F `
 A ) )  =  ( F `  B ) )
3736rexlimivw 3029 . . 3  |-  ( E. c  e.  X  ( ( F `  c
)  e.  ( Base `  S )  /\  (
( F `  c
) ( .r `  S ) ( F `
 A ) )  =  ( F `  B ) )  ->  E. y  e.  ( Base `  S ) ( y ( .r `  S ) ( F `
 A ) )  =  ( F `  B ) )
3833, 37syl 17 . 2  |-  ( ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  /\  A  .|| 
B )  ->  E. y  e.  ( Base `  S
) ( y ( .r `  S ) ( F `  A
) )  =  ( F `  B ) )
39 rhmdvdsr.n . . 3  |-  ./  =  ( ||r `
 S )
404, 39, 15dvdsr 18646 . 2  |-  ( ( F `  A ) 
./  ( F `  B )  <->  ( ( F `  A )  e.  ( Base `  S
)  /\  E. y  e.  ( Base `  S
) ( y ( .r `  S ) ( F `  A
) )  =  ( F `  B ) ) )
417, 38, 40sylanbrc 698 1  |-  ( ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  /\  A  .|| 
B )  ->  ( F `  A )  ./  ( F `  B
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   .rcmulr 15942   ||rcdsr 18638   RingHom crh 18712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-mhm 17335  df-ghm 17658  df-mgp 18490  df-ur 18502  df-ring 18549  df-dvdsr 18641  df-rnghom 18715
This theorem is referenced by:  elrhmunit  29820
  Copyright terms: Public domain W3C validator