MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rhmpropd Structured version   Visualization version   Unicode version

Theorem rhmpropd 18815
Description: Ring homomorphism depends only on the ring attributes of structures. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
rhmpropd.a  |-  ( ph  ->  B  =  ( Base `  J ) )
rhmpropd.b  |-  ( ph  ->  C  =  ( Base `  K ) )
rhmpropd.c  |-  ( ph  ->  B  =  ( Base `  L ) )
rhmpropd.d  |-  ( ph  ->  C  =  ( Base `  M ) )
rhmpropd.e  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  J ) y )  =  ( x ( +g  `  L ) y ) )
rhmpropd.f  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  C ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  M ) y ) )
rhmpropd.g  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  J ) y )  =  ( x ( .r `  L
) y ) )
rhmpropd.h  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  C ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  M
) y ) )
Assertion
Ref Expression
rhmpropd  |-  ( ph  ->  ( J RingHom  K )  =  ( L RingHom  M
) )
Distinct variable groups:    x, y, J    x, K, y    x, L, y    x, M, y    ph, x, y    x, B, y    x, C, y

Proof of Theorem rhmpropd
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 rhmpropd.a . . . . . 6  |-  ( ph  ->  B  =  ( Base `  J ) )
2 rhmpropd.c . . . . . 6  |-  ( ph  ->  B  =  ( Base `  L ) )
3 rhmpropd.e . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  J ) y )  =  ( x ( +g  `  L ) y ) )
4 rhmpropd.g . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  J ) y )  =  ( x ( .r `  L
) y ) )
51, 2, 3, 4ringpropd 18582 . . . . 5  |-  ( ph  ->  ( J  e.  Ring  <->  L  e.  Ring ) )
6 rhmpropd.b . . . . . 6  |-  ( ph  ->  C  =  ( Base `  K ) )
7 rhmpropd.d . . . . . 6  |-  ( ph  ->  C  =  ( Base `  M ) )
8 rhmpropd.f . . . . . 6  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  C ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  M ) y ) )
9 rhmpropd.h . . . . . 6  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  C ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  M
) y ) )
106, 7, 8, 9ringpropd 18582 . . . . 5  |-  ( ph  ->  ( K  e.  Ring  <->  M  e.  Ring ) )
115, 10anbi12d 747 . . . 4  |-  ( ph  ->  ( ( J  e. 
Ring  /\  K  e.  Ring ) 
<->  ( L  e.  Ring  /\  M  e.  Ring )
) )
121, 6, 2, 7, 3, 8ghmpropd 17698 . . . . . 6  |-  ( ph  ->  ( J  GrpHom  K )  =  ( L  GrpHom  M ) )
1312eleq2d 2687 . . . . 5  |-  ( ph  ->  ( f  e.  ( J  GrpHom  K )  <->  f  e.  ( L  GrpHom  M ) ) )
14 eqid 2622 . . . . . . . . 9  |-  (mulGrp `  J )  =  (mulGrp `  J )
15 eqid 2622 . . . . . . . . 9  |-  ( Base `  J )  =  (
Base `  J )
1614, 15mgpbas 18495 . . . . . . . 8  |-  ( Base `  J )  =  (
Base `  (mulGrp `  J
) )
171, 16syl6eq 2672 . . . . . . 7  |-  ( ph  ->  B  =  ( Base `  (mulGrp `  J )
) )
18 eqid 2622 . . . . . . . . 9  |-  (mulGrp `  K )  =  (mulGrp `  K )
19 eqid 2622 . . . . . . . . 9  |-  ( Base `  K )  =  (
Base `  K )
2018, 19mgpbas 18495 . . . . . . . 8  |-  ( Base `  K )  =  (
Base `  (mulGrp `  K
) )
216, 20syl6eq 2672 . . . . . . 7  |-  ( ph  ->  C  =  ( Base `  (mulGrp `  K )
) )
22 eqid 2622 . . . . . . . . 9  |-  (mulGrp `  L )  =  (mulGrp `  L )
23 eqid 2622 . . . . . . . . 9  |-  ( Base `  L )  =  (
Base `  L )
2422, 23mgpbas 18495 . . . . . . . 8  |-  ( Base `  L )  =  (
Base `  (mulGrp `  L
) )
252, 24syl6eq 2672 . . . . . . 7  |-  ( ph  ->  B  =  ( Base `  (mulGrp `  L )
) )
26 eqid 2622 . . . . . . . . 9  |-  (mulGrp `  M )  =  (mulGrp `  M )
27 eqid 2622 . . . . . . . . 9  |-  ( Base `  M )  =  (
Base `  M )
2826, 27mgpbas 18495 . . . . . . . 8  |-  ( Base `  M )  =  (
Base `  (mulGrp `  M
) )
297, 28syl6eq 2672 . . . . . . 7  |-  ( ph  ->  C  =  ( Base `  (mulGrp `  M )
) )
30 eqid 2622 . . . . . . . . . 10  |-  ( .r
`  J )  =  ( .r `  J
)
3114, 30mgpplusg 18493 . . . . . . . . 9  |-  ( .r
`  J )  =  ( +g  `  (mulGrp `  J ) )
3231oveqi 6663 . . . . . . . 8  |-  ( x ( .r `  J
) y )  =  ( x ( +g  `  (mulGrp `  J )
) y )
33 eqid 2622 . . . . . . . . . 10  |-  ( .r
`  L )  =  ( .r `  L
)
3422, 33mgpplusg 18493 . . . . . . . . 9  |-  ( .r
`  L )  =  ( +g  `  (mulGrp `  L ) )
3534oveqi 6663 . . . . . . . 8  |-  ( x ( .r `  L
) y )  =  ( x ( +g  `  (mulGrp `  L )
) y )
364, 32, 353eqtr3g 2679 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  (mulGrp `  J )
) y )  =  ( x ( +g  `  (mulGrp `  L )
) y ) )
37 eqid 2622 . . . . . . . . . 10  |-  ( .r
`  K )  =  ( .r `  K
)
3818, 37mgpplusg 18493 . . . . . . . . 9  |-  ( .r
`  K )  =  ( +g  `  (mulGrp `  K ) )
3938oveqi 6663 . . . . . . . 8  |-  ( x ( .r `  K
) y )  =  ( x ( +g  `  (mulGrp `  K )
) y )
40 eqid 2622 . . . . . . . . . 10  |-  ( .r
`  M )  =  ( .r `  M
)
4126, 40mgpplusg 18493 . . . . . . . . 9  |-  ( .r
`  M )  =  ( +g  `  (mulGrp `  M ) )
4241oveqi 6663 . . . . . . . 8  |-  ( x ( .r `  M
) y )  =  ( x ( +g  `  (mulGrp `  M )
) y )
439, 39, 423eqtr3g 2679 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  C ) )  -> 
( x ( +g  `  (mulGrp `  K )
) y )  =  ( x ( +g  `  (mulGrp `  M )
) y ) )
4417, 21, 25, 29, 36, 43mhmpropd 17341 . . . . . 6  |-  ( ph  ->  ( (mulGrp `  J
) MndHom  (mulGrp `  K )
)  =  ( (mulGrp `  L ) MndHom  (mulGrp `  M ) ) )
4544eleq2d 2687 . . . . 5  |-  ( ph  ->  ( f  e.  ( (mulGrp `  J ) MndHom  (mulGrp `  K ) )  <->  f  e.  ( (mulGrp `  L ) MndHom  (mulGrp `  M ) ) ) )
4613, 45anbi12d 747 . . . 4  |-  ( ph  ->  ( ( f  e.  ( J  GrpHom  K )  /\  f  e.  ( (mulGrp `  J ) MndHom  (mulGrp `  K ) ) )  <-> 
( f  e.  ( L  GrpHom  M )  /\  f  e.  ( (mulGrp `  L ) MndHom  (mulGrp `  M ) ) ) ) )
4711, 46anbi12d 747 . . 3  |-  ( ph  ->  ( ( ( J  e.  Ring  /\  K  e. 
Ring )  /\  (
f  e.  ( J 
GrpHom  K )  /\  f  e.  ( (mulGrp `  J
) MndHom  (mulGrp `  K )
) ) )  <->  ( ( L  e.  Ring  /\  M  e.  Ring )  /\  (
f  e.  ( L 
GrpHom  M )  /\  f  e.  ( (mulGrp `  L
) MndHom  (mulGrp `  M )
) ) ) ) )
4814, 18isrhm 18721 . . 3  |-  ( f  e.  ( J RingHom  K
)  <->  ( ( J  e.  Ring  /\  K  e. 
Ring )  /\  (
f  e.  ( J 
GrpHom  K )  /\  f  e.  ( (mulGrp `  J
) MndHom  (mulGrp `  K )
) ) ) )
4922, 26isrhm 18721 . . 3  |-  ( f  e.  ( L RingHom  M
)  <->  ( ( L  e.  Ring  /\  M  e. 
Ring )  /\  (
f  e.  ( L 
GrpHom  M )  /\  f  e.  ( (mulGrp `  L
) MndHom  (mulGrp `  M )
) ) ) )
5047, 48, 493bitr4g 303 . 2  |-  ( ph  ->  ( f  e.  ( J RingHom  K )  <->  f  e.  ( L RingHom  M ) ) )
5150eqrdv 2620 1  |-  ( ph  ->  ( J RingHom  K )  =  ( L RingHom  M
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   .rcmulr 15942   MndHom cmhm 17333    GrpHom cghm 17657  mulGrpcmgp 18489   Ringcrg 18547   RingHom crh 18712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-ghm 17658  df-mgp 18490  df-ur 18502  df-ring 18549  df-rnghom 18715
This theorem is referenced by:  evls1rhm  19687  evl1rhm  19696  zrhpropd  19863
  Copyright terms: Public domain W3C validator