MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evls1rhm Structured version   Visualization version   Unicode version

Theorem evls1rhm 19687
Description: Polynomial evaluation is a homomorphism (into the product ring). (Contributed by AV, 11-Sep-2019.)
Hypotheses
Ref Expression
evls1rhm.q  |-  Q  =  ( S evalSub1  R )
evls1rhm.b  |-  B  =  ( Base `  S
)
evls1rhm.t  |-  T  =  ( S  ^s  B )
evls1rhm.u  |-  U  =  ( Ss  R )
evls1rhm.w  |-  W  =  (Poly1 `  U )
Assertion
Ref Expression
evls1rhm  |-  ( ( S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  Q  e.  ( W RingHom  T ) )

Proof of Theorem evls1rhm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evls1rhm.b . . . . . 6  |-  B  =  ( Base `  S
)
21subrgss 18781 . . . . 5  |-  ( R  e.  (SubRing `  S
)  ->  R  C_  B
)
32adantl 482 . . . 4  |-  ( ( S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  R  C_  B
)
4 elpwg 4166 . . . . 5  |-  ( R  e.  (SubRing `  S
)  ->  ( R  e.  ~P B  <->  R  C_  B
) )
54adantl 482 . . . 4  |-  ( ( S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  ( R  e.  ~P B  <->  R  C_  B
) )
63, 5mpbird 247 . . 3  |-  ( ( S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  R  e.  ~P B )
7 evls1rhm.q . . . 4  |-  Q  =  ( S evalSub1  R )
8 eqid 2622 . . . 4  |-  ( 1o evalSub  S )  =  ( 1o evalSub  S )
97, 8, 1evls1fval 19684 . . 3  |-  ( ( S  e.  CRing  /\  R  e.  ~P B )  ->  Q  =  ( (
x  e.  ( B  ^m  ( B  ^m  1o ) )  |->  ( x  o.  ( y  e.  B  |->  ( 1o  X.  { y } ) ) ) )  o.  ( ( 1o evalSub  S ) `
 R ) ) )
106, 9syldan 487 . 2  |-  ( ( S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  Q  =  ( ( x  e.  ( B  ^m  ( B  ^m  1o ) ) 
|->  ( x  o.  (
y  e.  B  |->  ( 1o  X.  { y } ) ) ) )  o.  ( ( 1o evalSub  S ) `  R
) ) )
11 evls1rhm.t . . . . 5  |-  T  =  ( S  ^s  B )
12 eqid 2622 . . . . 5  |-  ( x  e.  ( B  ^m  ( B  ^m  1o ) )  |->  ( x  o.  ( y  e.  B  |->  ( 1o  X.  {
y } ) ) ) )  =  ( x  e.  ( B  ^m  ( B  ^m  1o ) )  |->  ( x  o.  ( y  e.  B  |->  ( 1o  X.  { y } ) ) ) )
131, 11, 12evls1rhmlem 19686 . . . 4  |-  ( S  e.  CRing  ->  ( x  e.  ( B  ^m  ( B  ^m  1o ) ) 
|->  ( x  o.  (
y  e.  B  |->  ( 1o  X.  { y } ) ) ) )  e.  ( ( S  ^s  ( B  ^m  1o ) ) RingHom  T ) )
1413adantr 481 . . 3  |-  ( ( S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  ( x  e.  ( B  ^m  ( B  ^m  1o ) ) 
|->  ( x  o.  (
y  e.  B  |->  ( 1o  X.  { y } ) ) ) )  e.  ( ( S  ^s  ( B  ^m  1o ) ) RingHom  T ) )
15 1on 7567 . . . . 5  |-  1o  e.  On
16 eqid 2622 . . . . . 6  |-  ( ( 1o evalSub  S ) `  R
)  =  ( ( 1o evalSub  S ) `  R
)
17 eqid 2622 . . . . . 6  |-  ( 1o mPoly  U )  =  ( 1o mPoly  U )
18 evls1rhm.u . . . . . 6  |-  U  =  ( Ss  R )
19 eqid 2622 . . . . . 6  |-  ( S  ^s  ( B  ^m  1o ) )  =  ( S  ^s  ( B  ^m  1o ) )
2016, 17, 18, 19, 1evlsrhm 19521 . . . . 5  |-  ( ( 1o  e.  On  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  ( ( 1o evalSub  S ) `  R
)  e.  ( ( 1o mPoly  U ) RingHom  ( S  ^s  ( B  ^m  1o ) ) ) )
2115, 20mp3an1 1411 . . . 4  |-  ( ( S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  ( ( 1o evalSub  S ) `  R
)  e.  ( ( 1o mPoly  U ) RingHom  ( S  ^s  ( B  ^m  1o ) ) ) )
22 eqidd 2623 . . . . 5  |-  ( ( S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  ( Base `  W )  =  (
Base `  W )
)
23 eqidd 2623 . . . . 5  |-  ( ( S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  ( Base `  ( S  ^s  ( B  ^m  1o ) ) )  =  ( Base `  ( S  ^s  ( B  ^m  1o ) ) ) )
24 evls1rhm.w . . . . . . 7  |-  W  =  (Poly1 `  U )
25 eqid 2622 . . . . . . 7  |-  (PwSer1 `  U
)  =  (PwSer1 `  U
)
26 eqid 2622 . . . . . . 7  |-  ( Base `  W )  =  (
Base `  W )
2724, 25, 26ply1bas 19565 . . . . . 6  |-  ( Base `  W )  =  (
Base `  ( 1o mPoly  U ) )
2827a1i 11 . . . . 5  |-  ( ( S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  ( Base `  W )  =  (
Base `  ( 1o mPoly  U ) ) )
29 eqid 2622 . . . . . . . 8  |-  ( +g  `  W )  =  ( +g  `  W )
3024, 17, 29ply1plusg 19595 . . . . . . 7  |-  ( +g  `  W )  =  ( +g  `  ( 1o mPoly  U ) )
3130a1i 11 . . . . . 6  |-  ( ( S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  ( +g  `  W )  =  ( +g  `  ( 1o mPoly  U ) ) )
3231oveqdr 6674 . . . . 5  |-  ( ( ( S  e.  CRing  /\  R  e.  (SubRing `  S
) )  /\  (
x  e.  ( Base `  W )  /\  y  e.  ( Base `  W
) ) )  -> 
( x ( +g  `  W ) y )  =  ( x ( +g  `  ( 1o mPoly  U ) ) y ) )
33 eqidd 2623 . . . . 5  |-  ( ( ( S  e.  CRing  /\  R  e.  (SubRing `  S
) )  /\  (
x  e.  ( Base `  ( S  ^s  ( B  ^m  1o ) ) )  /\  y  e.  ( Base `  ( S  ^s  ( B  ^m  1o ) ) ) ) )  ->  ( x
( +g  `  ( S  ^s  ( B  ^m  1o ) ) ) y )  =  ( x ( +g  `  ( S  ^s  ( B  ^m  1o ) ) ) y ) )
34 eqid 2622 . . . . . . . 8  |-  ( .r
`  W )  =  ( .r `  W
)
3524, 17, 34ply1mulr 19597 . . . . . . 7  |-  ( .r
`  W )  =  ( .r `  ( 1o mPoly  U ) )
3635a1i 11 . . . . . 6  |-  ( ( S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  ( .r `  W )  =  ( .r `  ( 1o mPoly  U ) ) )
3736oveqdr 6674 . . . . 5  |-  ( ( ( S  e.  CRing  /\  R  e.  (SubRing `  S
) )  /\  (
x  e.  ( Base `  W )  /\  y  e.  ( Base `  W
) ) )  -> 
( x ( .r
`  W ) y )  =  ( x ( .r `  ( 1o mPoly  U ) ) y ) )
38 eqidd 2623 . . . . 5  |-  ( ( ( S  e.  CRing  /\  R  e.  (SubRing `  S
) )  /\  (
x  e.  ( Base `  ( S  ^s  ( B  ^m  1o ) ) )  /\  y  e.  ( Base `  ( S  ^s  ( B  ^m  1o ) ) ) ) )  ->  ( x
( .r `  ( S  ^s  ( B  ^m  1o ) ) ) y )  =  ( x ( .r `  ( S  ^s  ( B  ^m  1o ) ) ) y ) )
3922, 23, 28, 23, 32, 33, 37, 38rhmpropd 18815 . . . 4  |-  ( ( S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  ( W RingHom  ( S  ^s  ( B  ^m  1o ) ) )  =  ( ( 1o mPoly  U
) RingHom  ( S  ^s  ( B  ^m  1o ) ) ) )
4021, 39eleqtrrd 2704 . . 3  |-  ( ( S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  ( ( 1o evalSub  S ) `  R
)  e.  ( W RingHom 
( S  ^s  ( B  ^m  1o ) ) ) )
41 rhmco 18737 . . 3  |-  ( ( ( x  e.  ( B  ^m  ( B  ^m  1o ) ) 
|->  ( x  o.  (
y  e.  B  |->  ( 1o  X.  { y } ) ) ) )  e.  ( ( S  ^s  ( B  ^m  1o ) ) RingHom  T )  /\  ( ( 1o evalSub  S ) `
 R )  e.  ( W RingHom  ( S  ^s  ( B  ^m  1o ) ) ) )  -> 
( ( x  e.  ( B  ^m  ( B  ^m  1o ) ) 
|->  ( x  o.  (
y  e.  B  |->  ( 1o  X.  { y } ) ) ) )  o.  ( ( 1o evalSub  S ) `  R
) )  e.  ( W RingHom  T ) )
4214, 40, 41syl2anc 693 . 2  |-  ( ( S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  ( (
x  e.  ( B  ^m  ( B  ^m  1o ) )  |->  ( x  o.  ( y  e.  B  |->  ( 1o  X.  { y } ) ) ) )  o.  ( ( 1o evalSub  S ) `
 R ) )  e.  ( W RingHom  T
) )
4310, 42eqeltrd 2701 1  |-  ( ( S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  Q  e.  ( W RingHom  T ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    C_ wss 3574   ~Pcpw 4158   {csn 4177    |-> cmpt 4729    X. cxp 5112    o. ccom 5118   Oncon0 5723   ` cfv 5888  (class class class)co 6650   1oc1o 7553    ^m cmap 7857   Basecbs 15857   ↾s cress 15858   +g cplusg 15941   .rcmulr 15942    ^s cpws 16107   CRingccrg 18548   RingHom crh 18712  SubRingcsubrg 18776   mPoly cmpl 19353   evalSub ces 19504  PwSer1cps1 19545  Poly1cpl1 19547   evalSub1 ces1 19678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-gsum 16103  df-prds 16108  df-pws 16110  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-srg 18506  df-ring 18549  df-cring 18550  df-rnghom 18715  df-subrg 18778  df-lmod 18865  df-lss 18933  df-lsp 18972  df-assa 19312  df-asp 19313  df-ascl 19314  df-psr 19356  df-mvr 19357  df-mpl 19358  df-opsr 19360  df-evls 19506  df-psr1 19550  df-ply1 19552  df-evls1 19680
This theorem is referenced by:  evls1gsumadd  19689  evls1gsummul  19690  evls1varpw  19691
  Copyright terms: Public domain W3C validator