Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngcresringcat Structured version   Visualization version   Unicode version

Theorem rngcresringcat 42030
Description: The restriction of the category of non-unital rings to the set of unital ring homomorphisms is the category of unital rings. (Contributed by AV, 16-Mar-2020.)
Hypotheses
Ref Expression
rhmsubcrngc.c  |-  C  =  (RngCat `  U )
rhmsubcrngc.u  |-  ( ph  ->  U  e.  V )
rhmsubcrngc.b  |-  ( ph  ->  B  =  ( Ring 
i^i  U ) )
rhmsubcrngc.h  |-  ( ph  ->  H  =  ( RingHom  |`  ( B  X.  B ) ) )
Assertion
Ref Expression
rngcresringcat  |-  ( ph  ->  ( C  |`cat  H )  =  (RingCat `  U )
)

Proof of Theorem rngcresringcat
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 rhmsubcrngc.c . . . 4  |-  C  =  (RngCat `  U )
2 rhmsubcrngc.u . . . 4  |-  ( ph  ->  U  e.  V )
3 eqidd 2623 . . . 4  |-  ( ph  ->  ( U  i^i Rng )  =  ( U  i^i Rng ) )
4 eqidd 2623 . . . 4  |-  ( ph  ->  ( RngHomo  |`  ( ( U  i^i Rng )  X.  ( U  i^i Rng ) ) )  =  ( RngHomo  |`  (
( U  i^i Rng )  X.  ( U  i^i Rng )
) ) )
5 eqidd 2623 . . . 4  |-  ( ph  ->  (comp `  (ExtStrCat `  U
) )  =  (comp `  (ExtStrCat `  U )
) )
61, 2, 3, 4, 5dfrngc2 41972 . . 3  |-  ( ph  ->  C  =  { <. (
Base `  ndx ) ,  ( U  i^i Rng ) >. ,  <. ( Hom  `  ndx ) ,  ( RngHomo  |`  (
( U  i^i Rng )  X.  ( U  i^i Rng )
) ) >. ,  <. (comp `  ndx ) ,  (comp `  (ExtStrCat `  U )
) >. } )
7 inex1g 4801 . . . 4  |-  ( U  e.  V  ->  ( U  i^i Rng )  e.  _V )
82, 7syl 17 . . 3  |-  ( ph  ->  ( U  i^i Rng )  e.  _V )
9 rnghmfn 41890 . . . . 5  |- RngHomo  Fn  (Rng  X. Rng )
10 fnfun 5988 . . . . 5  |-  ( RngHomo  Fn  (Rng  X. Rng )  ->  Fun RngHomo  )
119, 10mp1i 13 . . . 4  |-  ( ph  ->  Fun RngHomo  )
12 sqxpexg 6963 . . . . 5  |-  ( ( U  i^i Rng )  e.  _V  ->  ( ( U  i^i Rng )  X.  ( U  i^i Rng ) )  e. 
_V )
138, 12syl 17 . . . 4  |-  ( ph  ->  ( ( U  i^i Rng )  X.  ( U  i^i Rng ) )  e.  _V )
14 resfunexg 6479 . . . 4  |-  ( ( Fun RngHomo  /\  ( ( U  i^i Rng )  X.  ( U  i^i Rng ) )  e. 
_V )  ->  ( RngHomo  |`  ( ( U  i^i Rng )  X.  ( U  i^i Rng ) ) )  e.  _V )
1511, 13, 14syl2anc 693 . . 3  |-  ( ph  ->  ( RngHomo  |`  ( ( U  i^i Rng )  X.  ( U  i^i Rng ) ) )  e.  _V )
16 fvexd 6203 . . 3  |-  ( ph  ->  (comp `  (ExtStrCat `  U
) )  e.  _V )
17 rhmsubcrngc.b . . . . 5  |-  ( ph  ->  B  =  ( Ring 
i^i  U ) )
18 incom 3805 . . . . 5  |-  ( Ring 
i^i  U )  =  ( U  i^i  Ring )
1917, 18syl6eq 2672 . . . 4  |-  ( ph  ->  B  =  ( U  i^i  Ring ) )
20 inex1g 4801 . . . . 5  |-  ( U  e.  V  ->  ( U  i^i  Ring )  e.  _V )
212, 20syl 17 . . . 4  |-  ( ph  ->  ( U  i^i  Ring )  e.  _V )
2219, 21eqeltrd 2701 . . 3  |-  ( ph  ->  B  e.  _V )
23 rhmsubcrngc.h . . . 4  |-  ( ph  ->  H  =  ( RingHom  |`  ( B  X.  B ) ) )
24 rhmfn 41918 . . . . . 6  |- RingHom  Fn  ( Ring  X.  Ring )
25 fnfun 5988 . . . . . 6  |-  ( RingHom  Fn  ( Ring  X.  Ring )  ->  Fun RingHom  )
2624, 25mp1i 13 . . . . 5  |-  ( ph  ->  Fun RingHom  )
27 sqxpexg 6963 . . . . . 6  |-  ( B  e.  _V  ->  ( B  X.  B )  e. 
_V )
2822, 27syl 17 . . . . 5  |-  ( ph  ->  ( B  X.  B
)  e.  _V )
29 resfunexg 6479 . . . . 5  |-  ( ( Fun RingHom  /\  ( B  X.  B )  e.  _V )  ->  ( RingHom  |`  ( B  X.  B ) )  e.  _V )
3026, 28, 29syl2anc 693 . . . 4  |-  ( ph  ->  ( RingHom  |`  ( B  X.  B ) )  e. 
_V )
3123, 30eqeltrd 2701 . . 3  |-  ( ph  ->  H  e.  _V )
32 ringrng 41879 . . . . . . 7  |-  ( r  e.  Ring  ->  r  e. Rng )
3332a1i 11 . . . . . 6  |-  ( ph  ->  ( r  e.  Ring  -> 
r  e. Rng ) )
3433ssrdv 3609 . . . . 5  |-  ( ph  ->  Ring  C_ Rng )
35 ssrin 3838 . . . . 5  |-  ( Ring  C_ Rng  ->  ( Ring  i^i  U )  C_  (Rng  i^i  U ) )
3634, 35syl 17 . . . 4  |-  ( ph  ->  ( Ring  i^i  U ) 
C_  (Rng  i^i  U
) )
37 incom 3805 . . . . 5  |-  ( U  i^i Rng )  =  (Rng 
i^i  U )
3837a1i 11 . . . 4  |-  ( ph  ->  ( U  i^i Rng )  =  (Rng  i^i  U ) )
3936, 17, 383sstr4d 3648 . . 3  |-  ( ph  ->  B  C_  ( U  i^i Rng ) )
406, 8, 15, 16, 22, 31, 39estrres 16779 . 2  |-  ( ph  ->  ( ( Cs  B ) sSet  <. ( Hom  `  ndx ) ,  H >. )  =  { <. ( Base `  ndx ) ,  B >. ,  <. ( Hom  `  ndx ) ,  H >. ,  <. (comp ` 
ndx ) ,  (comp `  (ExtStrCat `  U )
) >. } )
41 eqid 2622 . . 3  |-  ( C  |`cat 
H )  =  ( C  |`cat  H )
421a1i 11 . . . 4  |-  ( ph  ->  C  =  (RngCat `  U ) )
43 fvexd 6203 . . . 4  |-  ( ph  ->  (RngCat `  U )  e.  _V )
4442, 43eqeltrd 2701 . . 3  |-  ( ph  ->  C  e.  _V )
4519, 23rhmresfn 42009 . . 3  |-  ( ph  ->  H  Fn  ( B  X.  B ) )
4641, 44, 22, 45rescval2 16488 . 2  |-  ( ph  ->  ( C  |`cat  H )  =  ( ( Cs  B ) sSet  <. ( Hom  `  ndx ) ,  H >. ) )
47 eqid 2622 . . 3  |-  (RingCat `  U
)  =  (RingCat `  U
)
4847, 2, 19, 23, 5dfringc2 42018 . 2  |-  ( ph  ->  (RingCat `  U )  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( Hom  `  ndx ) ,  H >. , 
<. (comp `  ndx ) ,  (comp `  (ExtStrCat `  U
) ) >. } )
4940, 46, 483eqtr4d 2666 1  |-  ( ph  ->  ( C  |`cat  H )  =  (RingCat `  U )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   _Vcvv 3200    i^i cin 3573    C_ wss 3574   {ctp 4181   <.cop 4183    X. cxp 5112    |` cres 5116   Fun wfun 5882    Fn wfn 5883   ` cfv 5888  (class class class)co 6650   ndxcnx 15854   sSet csts 15855   Basecbs 15857   ↾s cress 15858   Hom chom 15952  compcco 15953    |`cat cresc 16468  ExtStrCatcestrc 16762   Ringcrg 18547   RingHom crh 18712  Rngcrng 41874   RngHomo crngh 41885  RngCatcrngc 41957  RingCatcringc 42003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-hom 15966  df-cco 15967  df-0g 16102  df-resc 16471  df-estrc 16763  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-minusg 17426  df-ghm 17658  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-rnghom 18715  df-rng0 41875  df-rnghomo 41887  df-rngc 41959  df-ringc 42005
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator