MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgrnumwwlkb0 Structured version   Visualization version   Unicode version

Theorem rusgrnumwwlkb0 26866
Description: Induction base 0 for rusgrnumwwlk 26870. Here, we do not need the regularity of the graph yet. (Contributed by Alexander van der Vekens, 24-Jul-2018.) (Revised by AV, 7-May-2021.)
Hypotheses
Ref Expression
rusgrnumwwlk.v  |-  V  =  (Vtx `  G )
rusgrnumwwlk.l  |-  L  =  ( v  e.  V ,  n  e.  NN0  |->  ( # `  { w  e.  ( n WWalksN  G )  |  ( w ` 
0 )  =  v } ) )
Assertion
Ref Expression
rusgrnumwwlkb0  |-  ( ( G  e. USPGraph  /\  P  e.  V )  ->  ( P L 0 )  =  1 )
Distinct variable groups:    n, G, v, w    P, n, v, w    n, V, v, w
Allowed substitution hints:    L( w, v, n)

Proof of Theorem rusgrnumwwlkb0
StepHypRef Expression
1 simpr 477 . . 3  |-  ( ( G  e. USPGraph  /\  P  e.  V )  ->  P  e.  V )
2 0nn0 11307 . . 3  |-  0  e.  NN0
3 rusgrnumwwlk.v . . . 4  |-  V  =  (Vtx `  G )
4 rusgrnumwwlk.l . . . 4  |-  L  =  ( v  e.  V ,  n  e.  NN0  |->  ( # `  { w  e.  ( n WWalksN  G )  |  ( w ` 
0 )  =  v } ) )
53, 4rusgrnumwwlklem 26865 . . 3  |-  ( ( P  e.  V  /\  0  e.  NN0 )  -> 
( P L 0 )  =  ( # `  { w  e.  ( 0 WWalksN  G )  |  ( w `  0 )  =  P } ) )
61, 2, 5sylancl 694 . 2  |-  ( ( G  e. USPGraph  /\  P  e.  V )  ->  ( P L 0 )  =  ( # `  {
w  e.  ( 0 WWalksN  G )  |  ( w `  0 )  =  P } ) )
7 df-rab 2921 . . . . 5  |-  { w  e.  ( 0 WWalksN  G )  |  ( w ` 
0 )  =  P }  =  { w  |  ( w  e.  ( 0 WWalksN  G )  /\  ( w ` 
0 )  =  P ) }
87a1i 11 . . . 4  |-  ( ( G  e. USPGraph  /\  P  e.  V )  ->  { w  e.  ( 0 WWalksN  G )  |  ( w ` 
0 )  =  P }  =  { w  |  ( w  e.  ( 0 WWalksN  G )  /\  ( w ` 
0 )  =  P ) } )
9 wwlksn0s 26746 . . . . . . . . 9  |-  ( 0 WWalksN  G )  =  {
w  e. Word  (Vtx `  G
)  |  ( # `  w )  =  1 }
109a1i 11 . . . . . . . 8  |-  ( ( G  e. USPGraph  /\  P  e.  V )  ->  (
0 WWalksN  G )  =  {
w  e. Word  (Vtx `  G
)  |  ( # `  w )  =  1 } )
1110eleq2d 2687 . . . . . . 7  |-  ( ( G  e. USPGraph  /\  P  e.  V )  ->  (
w  e.  ( 0 WWalksN  G )  <->  w  e.  { w  e. Word  (Vtx `  G )  |  (
# `  w )  =  1 } ) )
12 rabid 3116 . . . . . . 7  |-  ( w  e.  { w  e. Word 
(Vtx `  G )  |  ( # `  w
)  =  1 }  <-> 
( w  e. Word  (Vtx `  G )  /\  ( # `
 w )  =  1 ) )
1311, 12syl6bb 276 . . . . . 6  |-  ( ( G  e. USPGraph  /\  P  e.  V )  ->  (
w  e.  ( 0 WWalksN  G )  <->  ( w  e. Word  (Vtx `  G )  /\  ( # `  w
)  =  1 ) ) )
1413anbi1d 741 . . . . 5  |-  ( ( G  e. USPGraph  /\  P  e.  V )  ->  (
( w  e.  ( 0 WWalksN  G )  /\  (
w `  0 )  =  P )  <->  ( (
w  e. Word  (Vtx `  G
)  /\  ( # `  w
)  =  1 )  /\  ( w ` 
0 )  =  P ) ) )
1514abbidv 2741 . . . 4  |-  ( ( G  e. USPGraph  /\  P  e.  V )  ->  { w  |  ( w  e.  ( 0 WWalksN  G )  /\  ( w ` 
0 )  =  P ) }  =  {
w  |  ( ( w  e. Word  (Vtx `  G )  /\  ( # `
 w )  =  1 )  /\  (
w `  0 )  =  P ) } )
16 wrdl1s1 13394 . . . . . . . . 9  |-  ( P  e.  (Vtx `  G
)  ->  ( v  =  <" P "> 
<->  ( v  e. Word  (Vtx `  G )  /\  ( # `
 v )  =  1  /\  ( v `
 0 )  =  P ) ) )
17 df-3an 1039 . . . . . . . . 9  |-  ( ( v  e. Word  (Vtx `  G )  /\  ( # `
 v )  =  1  /\  ( v `
 0 )  =  P )  <->  ( (
v  e. Word  (Vtx `  G
)  /\  ( # `  v
)  =  1 )  /\  ( v ` 
0 )  =  P ) )
1816, 17syl6rbb 277 . . . . . . . 8  |-  ( P  e.  (Vtx `  G
)  ->  ( (
( v  e. Word  (Vtx `  G )  /\  ( # `
 v )  =  1 )  /\  (
v `  0 )  =  P )  <->  v  =  <" P "> ) )
19 vex 3203 . . . . . . . . 9  |-  v  e. 
_V
20 eleq1 2689 . . . . . . . . . . 11  |-  ( w  =  v  ->  (
w  e. Word  (Vtx `  G
)  <->  v  e. Word  (Vtx `  G ) ) )
21 fveq2 6191 . . . . . . . . . . . 12  |-  ( w  =  v  ->  ( # `
 w )  =  ( # `  v
) )
2221eqeq1d 2624 . . . . . . . . . . 11  |-  ( w  =  v  ->  (
( # `  w )  =  1  <->  ( # `  v
)  =  1 ) )
2320, 22anbi12d 747 . . . . . . . . . 10  |-  ( w  =  v  ->  (
( w  e. Word  (Vtx `  G )  /\  ( # `
 w )  =  1 )  <->  ( v  e. Word  (Vtx `  G )  /\  ( # `  v
)  =  1 ) ) )
24 fveq1 6190 . . . . . . . . . . 11  |-  ( w  =  v  ->  (
w `  0 )  =  ( v ` 
0 ) )
2524eqeq1d 2624 . . . . . . . . . 10  |-  ( w  =  v  ->  (
( w `  0
)  =  P  <->  ( v `  0 )  =  P ) )
2623, 25anbi12d 747 . . . . . . . . 9  |-  ( w  =  v  ->  (
( ( w  e. Word 
(Vtx `  G )  /\  ( # `  w
)  =  1 )  /\  ( w ` 
0 )  =  P )  <->  ( ( v  e. Word  (Vtx `  G
)  /\  ( # `  v
)  =  1 )  /\  ( v ` 
0 )  =  P ) ) )
2719, 26elab 3350 . . . . . . . 8  |-  ( v  e.  { w  |  ( ( w  e. Word 
(Vtx `  G )  /\  ( # `  w
)  =  1 )  /\  ( w ` 
0 )  =  P ) }  <->  ( (
v  e. Word  (Vtx `  G
)  /\  ( # `  v
)  =  1 )  /\  ( v ` 
0 )  =  P ) )
28 velsn 4193 . . . . . . . 8  |-  ( v  e.  { <" P "> }  <->  v  =  <" P "> )
2918, 27, 283bitr4g 303 . . . . . . 7  |-  ( P  e.  (Vtx `  G
)  ->  ( v  e.  { w  |  ( ( w  e. Word  (Vtx `  G )  /\  ( # `
 w )  =  1 )  /\  (
w `  0 )  =  P ) }  <->  v  e.  {
<" P "> } ) )
3029, 3eleq2s 2719 . . . . . 6  |-  ( P  e.  V  ->  (
v  e.  { w  |  ( ( w  e. Word  (Vtx `  G
)  /\  ( # `  w
)  =  1 )  /\  ( w ` 
0 )  =  P ) }  <->  v  e.  {
<" P "> } ) )
3130eqrdv 2620 . . . . 5  |-  ( P  e.  V  ->  { w  |  ( ( w  e. Word  (Vtx `  G
)  /\  ( # `  w
)  =  1 )  /\  ( w ` 
0 )  =  P ) }  =  { <" P "> } )
3231adantl 482 . . . 4  |-  ( ( G  e. USPGraph  /\  P  e.  V )  ->  { w  |  ( ( w  e. Word  (Vtx `  G
)  /\  ( # `  w
)  =  1 )  /\  ( w ` 
0 )  =  P ) }  =  { <" P "> } )
338, 15, 323eqtrd 2660 . . 3  |-  ( ( G  e. USPGraph  /\  P  e.  V )  ->  { w  e.  ( 0 WWalksN  G )  |  ( w ` 
0 )  =  P }  =  { <" P "> } )
3433fveq2d 6195 . 2  |-  ( ( G  e. USPGraph  /\  P  e.  V )  ->  ( # `
 { w  e.  ( 0 WWalksN  G )  |  ( w ` 
0 )  =  P } )  =  (
# `  { <" P "> } ) )
35 s1cl 13382 . . . 4  |-  ( P  e.  V  ->  <" P ">  e. Word  V )
36 hashsng 13159 . . . 4  |-  ( <" P ">  e. Word  V  ->  ( # `  { <" P "> } )  =  1 )
3735, 36syl 17 . . 3  |-  ( P  e.  V  ->  ( # `
 { <" P "> } )  =  1 )
3837adantl 482 . 2  |-  ( ( G  e. USPGraph  /\  P  e.  V )  ->  ( # `
 { <" P "> } )  =  1 )
396, 34, 383eqtrd 2660 1  |-  ( ( G  e. USPGraph  /\  P  e.  V )  ->  ( P L 0 )  =  1 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {cab 2608   {crab 2916   {csn 4177   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   0cc0 9936   1c1 9937   NN0cn0 11292   #chash 13117  Word cword 13291   <"cs1 13294  Vtxcvtx 25874   USPGraph cuspgr 26043   WWalksN cwwlksn 26718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-s1 13302  df-wwlks 26722  df-wwlksn 26723
This theorem is referenced by:  rusgrnumwwlk  26870
  Copyright terms: Public domain W3C validator