MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadfval Structured version   Visualization version   Unicode version

Theorem sadfval 15174
Description: Define the addition of two bit sequences, using df-had 1533 and df-cad 1546 bit operations. (Contributed by Mario Carneiro, 5-Sep-2016.)
Hypotheses
Ref Expression
sadval.a  |-  ( ph  ->  A  C_  NN0 )
sadval.b  |-  ( ph  ->  B  C_  NN0 )
sadval.c  |-  C  =  seq 0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) )
Assertion
Ref Expression
sadfval  |-  ( ph  ->  ( A sadd  B )  =  { k  e. 
NN0  | hadd ( k  e.  A ,  k  e.  B ,  (/)  e.  ( C `  k ) ) } )
Distinct variable groups:    k, c, m, n    A, c, k, m    B, c, k, m    C, k    ph, k
Allowed substitution hints:    ph( m, n, c)    A( n)    B( n)    C( m, n, c)

Proof of Theorem sadfval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sadval.a . . 3  |-  ( ph  ->  A  C_  NN0 )
2 nn0ex 11298 . . . 4  |-  NN0  e.  _V
32elpw2 4828 . . 3  |-  ( A  e.  ~P NN0  <->  A  C_  NN0 )
41, 3sylibr 224 . 2  |-  ( ph  ->  A  e.  ~P NN0 )
5 sadval.b . . 3  |-  ( ph  ->  B  C_  NN0 )
62elpw2 4828 . . 3  |-  ( B  e.  ~P NN0  <->  B  C_  NN0 )
75, 6sylibr 224 . 2  |-  ( ph  ->  B  e.  ~P NN0 )
8 simpl 473 . . . . . 6  |-  ( ( x  =  A  /\  y  =  B )  ->  x  =  A )
98eleq2d 2687 . . . . 5  |-  ( ( x  =  A  /\  y  =  B )  ->  ( k  e.  x  <->  k  e.  A ) )
10 simpr 477 . . . . . 6  |-  ( ( x  =  A  /\  y  =  B )  ->  y  =  B )
1110eleq2d 2687 . . . . 5  |-  ( ( x  =  A  /\  y  =  B )  ->  ( k  e.  y  <-> 
k  e.  B ) )
12 simp1l 1085 . . . . . . . . . . . . 13  |-  ( ( ( x  =  A  /\  y  =  B )  /\  c  e.  2o  /\  m  e. 
NN0 )  ->  x  =  A )
1312eleq2d 2687 . . . . . . . . . . . 12  |-  ( ( ( x  =  A  /\  y  =  B )  /\  c  e.  2o  /\  m  e. 
NN0 )  ->  (
m  e.  x  <->  m  e.  A ) )
14 simp1r 1086 . . . . . . . . . . . . 13  |-  ( ( ( x  =  A  /\  y  =  B )  /\  c  e.  2o  /\  m  e. 
NN0 )  ->  y  =  B )
1514eleq2d 2687 . . . . . . . . . . . 12  |-  ( ( ( x  =  A  /\  y  =  B )  /\  c  e.  2o  /\  m  e. 
NN0 )  ->  (
m  e.  y  <->  m  e.  B ) )
16 biidd 252 . . . . . . . . . . . 12  |-  ( ( ( x  =  A  /\  y  =  B )  /\  c  e.  2o  /\  m  e. 
NN0 )  ->  ( (/) 
e.  c  <->  (/)  e.  c ) )
1713, 15, 16cadbi123d 1549 . . . . . . . . . . 11  |-  ( ( ( x  =  A  /\  y  =  B )  /\  c  e.  2o  /\  m  e. 
NN0 )  ->  (cadd ( m  e.  x ,  m  e.  y ,  (/)  e.  c )  <-> cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ) )
1817ifbid 4108 . . . . . . . . . 10  |-  ( ( ( x  =  A  /\  y  =  B )  /\  c  e.  2o  /\  m  e. 
NN0 )  ->  if (cadd ( m  e.  x ,  m  e.  y ,  (/)  e.  c ) ,  1o ,  (/) )  =  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) )
1918mpt2eq3dva 6719 . . . . . . . . 9  |-  ( ( x  =  A  /\  y  =  B )  ->  ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  x ,  m  e.  y ,  (/)  e.  c ) ,  1o ,  (/) ) )  =  ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) )
2019seqeq2d 12808 . . . . . . . 8  |-  ( ( x  =  A  /\  y  =  B )  ->  seq 0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  x ,  m  e.  y ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) )  =  seq 0
( ( c  e.  2o ,  m  e. 
NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/) 
e.  c ) ,  1o ,  (/) ) ) ,  ( n  e. 
NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) )
21 sadval.c . . . . . . . 8  |-  C  =  seq 0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) )
2220, 21syl6eqr 2674 . . . . . . 7  |-  ( ( x  =  A  /\  y  =  B )  ->  seq 0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  x ,  m  e.  y ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) )  =  C )
2322fveq1d 6193 . . . . . 6  |-  ( ( x  =  A  /\  y  =  B )  ->  (  seq 0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  x ,  m  e.  y ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) ) `  k )  =  ( C `  k ) )
2423eleq2d 2687 . . . . 5  |-  ( ( x  =  A  /\  y  =  B )  ->  ( (/)  e.  (  seq 0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  x ,  m  e.  y ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e. 
NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `
 k )  <->  (/)  e.  ( C `  k ) ) )
259, 11, 24hadbi123d 1534 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  (hadd ( k  e.  x ,  k  e.  y ,  (/)  e.  (  seq 0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  x ,  m  e.  y ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) ) `  k ) )  <-> hadd ( k  e.  A ,  k  e.  B ,  (/)  e.  ( C `
 k ) ) ) )
2625rabbidv 3189 . . 3  |-  ( ( x  =  A  /\  y  =  B )  ->  { k  e.  NN0  | hadd ( k  e.  x ,  k  e.  y ,  (/)  e.  (  seq 0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  x ,  m  e.  y ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e. 
NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `
 k ) ) }  =  { k  e.  NN0  | hadd (
k  e.  A , 
k  e.  B ,  (/) 
e.  ( C `  k ) ) } )
27 df-sad 15173 . . 3  |- sadd  =  ( x  e.  ~P NN0 ,  y  e.  ~P NN0  |->  { k  e.  NN0  | hadd ( k  e.  x ,  k  e.  y ,  (/)  e.  (  seq 0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  x ,  m  e.  y ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e. 
NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `
 k ) ) } )
282rabex 4813 . . 3  |-  { k  e.  NN0  | hadd (
k  e.  A , 
k  e.  B ,  (/) 
e.  ( C `  k ) ) }  e.  _V
2926, 27, 28ovmpt2a 6791 . 2  |-  ( ( A  e.  ~P NN0  /\  B  e.  ~P NN0 )  ->  ( A sadd  B
)  =  { k  e.  NN0  | hadd (
k  e.  A , 
k  e.  B ,  (/) 
e.  ( C `  k ) ) } )
304, 7, 29syl2anc 693 1  |-  ( ph  ->  ( A sadd  B )  =  { k  e. 
NN0  | hadd ( k  e.  A ,  k  e.  B ,  (/)  e.  ( C `  k ) ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483  haddwhad 1532  caddwcad 1545    e. wcel 1990   {crab 2916    C_ wss 3574   (/)c0 3915   ifcif 4086   ~Pcpw 4158    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1oc1o 7553   2oc2o 7554   0cc0 9936   1c1 9937    - cmin 10266   NN0cn0 11292    seqcseq 12801   sadd csad 15142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-i2m1 10004  ax-1ne0 10005  ax-rrecex 10008  ax-cnre 10009
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-xor 1465  df-tru 1486  df-had 1533  df-cad 1546  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-nn 11021  df-n0 11293  df-seq 12802  df-sad 15173
This theorem is referenced by:  sadval  15178  sadadd2lem  15181  sadadd3  15183  sadcl  15184  sadcom  15185
  Copyright terms: Public domain W3C validator