| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > seqcaopr2 | Structured version Visualization version Unicode version | ||
| Description: The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by Mario Carneiro, 30-May-2014.) |
| Ref | Expression |
|---|---|
| seqcaopr2.1 |
|
| seqcaopr2.2 |
|
| seqcaopr2.3 |
|
| seqcaopr2.4 |
|
| seqcaopr2.5 |
|
| seqcaopr2.6 |
|
| seqcaopr2.7 |
|
| Ref | Expression |
|---|---|
| seqcaopr2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqcaopr2.1 |
. 2
| |
| 2 | seqcaopr2.2 |
. 2
| |
| 3 | seqcaopr2.4 |
. 2
| |
| 4 | seqcaopr2.5 |
. 2
| |
| 5 | seqcaopr2.6 |
. 2
| |
| 6 | seqcaopr2.7 |
. 2
| |
| 7 | elfzouz 12474 |
. . . . 5
| |
| 8 | 7 | adantl 482 |
. . . 4
|
| 9 | elfzouz2 12484 |
. . . . . . . 8
| |
| 10 | 9 | adantl 482 |
. . . . . . 7
|
| 11 | fzss2 12381 |
. . . . . . 7
| |
| 12 | 10, 11 | syl 17 |
. . . . . 6
|
| 13 | 12 | sselda 3603 |
. . . . 5
|
| 14 | 5 | ralrimiva 2966 |
. . . . . . 7
|
| 15 | 14 | adantr 481 |
. . . . . 6
|
| 16 | fveq2 6191 |
. . . . . . . 8
| |
| 17 | 16 | eleq1d 2686 |
. . . . . . 7
|
| 18 | 17 | rspccva 3308 |
. . . . . 6
|
| 19 | 15, 18 | sylan 488 |
. . . . 5
|
| 20 | 13, 19 | syldan 487 |
. . . 4
|
| 21 | 1 | adantlr 751 |
. . . 4
|
| 22 | 8, 20, 21 | seqcl 12821 |
. . 3
|
| 23 | fzofzp1 12565 |
. . . 4
| |
| 24 | fveq2 6191 |
. . . . . 6
| |
| 25 | 24 | eleq1d 2686 |
. . . . 5
|
| 26 | 25 | rspccva 3308 |
. . . 4
|
| 27 | 14, 23, 26 | syl2an 494 |
. . 3
|
| 28 | 4 | ralrimiva 2966 |
. . . . . . . 8
|
| 29 | fveq2 6191 |
. . . . . . . . . 10
| |
| 30 | 29 | eleq1d 2686 |
. . . . . . . . 9
|
| 31 | 30 | rspccva 3308 |
. . . . . . . 8
|
| 32 | 28, 31 | sylan 488 |
. . . . . . 7
|
| 33 | 32 | adantlr 751 |
. . . . . 6
|
| 34 | 13, 33 | syldan 487 |
. . . . 5
|
| 35 | 8, 34, 21 | seqcl 12821 |
. . . 4
|
| 36 | fveq2 6191 |
. . . . . . 7
| |
| 37 | 36 | eleq1d 2686 |
. . . . . 6
|
| 38 | 37 | rspccva 3308 |
. . . . 5
|
| 39 | 28, 23, 38 | syl2an 494 |
. . . 4
|
| 40 | seqcaopr2.3 |
. . . . . . . 8
| |
| 41 | 40 | anassrs 680 |
. . . . . . 7
|
| 42 | 41 | ralrimivva 2971 |
. . . . . 6
|
| 43 | 42 | ralrimivva 2971 |
. . . . 5
|
| 44 | 43 | adantr 481 |
. . . 4
|
| 45 | oveq1 6657 |
. . . . . . . 8
| |
| 46 | 45 | oveq1d 6665 |
. . . . . . 7
|
| 47 | oveq1 6657 |
. . . . . . . 8
| |
| 48 | 47 | oveq1d 6665 |
. . . . . . 7
|
| 49 | 46, 48 | eqeq12d 2637 |
. . . . . 6
|
| 50 | 49 | 2ralbidv 2989 |
. . . . 5
|
| 51 | oveq1 6657 |
. . . . . . . 8
| |
| 52 | 51 | oveq2d 6666 |
. . . . . . 7
|
| 53 | oveq2 6658 |
. . . . . . . 8
| |
| 54 | 53 | oveq1d 6665 |
. . . . . . 7
|
| 55 | 52, 54 | eqeq12d 2637 |
. . . . . 6
|
| 56 | 55 | 2ralbidv 2989 |
. . . . 5
|
| 57 | 50, 56 | rspc2va 3323 |
. . . 4
|
| 58 | 35, 39, 44, 57 | syl21anc 1325 |
. . 3
|
| 59 | oveq2 6658 |
. . . . . 6
| |
| 60 | 59 | oveq1d 6665 |
. . . . 5
|
| 61 | oveq1 6657 |
. . . . . 6
| |
| 62 | 61 | oveq2d 6666 |
. . . . 5
|
| 63 | 60, 62 | eqeq12d 2637 |
. . . 4
|
| 64 | oveq2 6658 |
. . . . . 6
| |
| 65 | 64 | oveq2d 6666 |
. . . . 5
|
| 66 | oveq2 6658 |
. . . . . 6
| |
| 67 | 66 | oveq2d 6666 |
. . . . 5
|
| 68 | 65, 67 | eqeq12d 2637 |
. . . 4
|
| 69 | 63, 68 | rspc2va 3323 |
. . 3
|
| 70 | 22, 27, 58, 69 | syl21anc 1325 |
. 2
|
| 71 | 1, 2, 3, 4, 5, 6, 70 | seqcaopr3 12836 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-fzo 12466 df-seq 12802 |
| This theorem is referenced by: seqcaopr 12838 sersub 12844 |
| Copyright terms: Public domain | W3C validator |