MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqcaopr2 Structured version   Visualization version   Unicode version

Theorem seqcaopr2 12837
Description: The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by Mario Carneiro, 30-May-2014.)
Hypotheses
Ref Expression
seqcaopr2.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
seqcaopr2.2  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x Q y )  e.  S )
seqcaopr2.3  |-  ( (
ph  /\  ( (
x  e.  S  /\  y  e.  S )  /\  ( z  e.  S  /\  w  e.  S
) ) )  -> 
( ( x Q z )  .+  (
y Q w ) )  =  ( ( x  .+  y ) Q ( z  .+  w ) ) )
seqcaopr2.4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
seqcaopr2.5  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  S
)
seqcaopr2.6  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( G `  k )  e.  S
)
seqcaopr2.7  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( H `  k )  =  ( ( F `  k
) Q ( G `
 k ) ) )
Assertion
Ref Expression
seqcaopr2  |-  ( ph  ->  (  seq M ( 
.+  ,  H ) `
 N )  =  ( (  seq M
(  .+  ,  F
) `  N ) Q (  seq M
(  .+  ,  G
) `  N )
) )
Distinct variable groups:    w, k, x, y, z, F    k, H, z    k, N, x, y, z    ph, k, w, x, y, z    k, G, w, x, y, z   
k, M, w, x, y, z    Q, k, w, x, y, z   
w,  .+ , x, y,
z    S, k, w, x, y, z
Allowed substitution hints:    .+ ( k)    H( x, y, w)    N( w)

Proof of Theorem seqcaopr2
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 seqcaopr2.1 . 2  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
2 seqcaopr2.2 . 2  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x Q y )  e.  S )
3 seqcaopr2.4 . 2  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
4 seqcaopr2.5 . 2  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  S
)
5 seqcaopr2.6 . 2  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( G `  k )  e.  S
)
6 seqcaopr2.7 . 2  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( H `  k )  =  ( ( F `  k
) Q ( G `
 k ) ) )
7 elfzouz 12474 . . . . 5  |-  ( n  e.  ( M..^ N
)  ->  n  e.  ( ZZ>= `  M )
)
87adantl 482 . . . 4  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  n  e.  (
ZZ>= `  M ) )
9 elfzouz2 12484 . . . . . . . 8  |-  ( n  e.  ( M..^ N
)  ->  N  e.  ( ZZ>= `  n )
)
109adantl 482 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  N  e.  (
ZZ>= `  n ) )
11 fzss2 12381 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  n
)  ->  ( M ... n )  C_  ( M ... N ) )
1210, 11syl 17 . . . . . 6  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( M ... n )  C_  ( M ... N ) )
1312sselda 3603 . . . . 5  |-  ( ( ( ph  /\  n  e.  ( M..^ N ) )  /\  x  e.  ( M ... n
) )  ->  x  e.  ( M ... N
) )
145ralrimiva 2966 . . . . . . 7  |-  ( ph  ->  A. k  e.  ( M ... N ) ( G `  k
)  e.  S )
1514adantr 481 . . . . . 6  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  A. k  e.  ( M ... N ) ( G `  k
)  e.  S )
16 fveq2 6191 . . . . . . . 8  |-  ( k  =  x  ->  ( G `  k )  =  ( G `  x ) )
1716eleq1d 2686 . . . . . . 7  |-  ( k  =  x  ->  (
( G `  k
)  e.  S  <->  ( G `  x )  e.  S
) )
1817rspccva 3308 . . . . . 6  |-  ( ( A. k  e.  ( M ... N ) ( G `  k
)  e.  S  /\  x  e.  ( M ... N ) )  -> 
( G `  x
)  e.  S )
1915, 18sylan 488 . . . . 5  |-  ( ( ( ph  /\  n  e.  ( M..^ N ) )  /\  x  e.  ( M ... N
) )  ->  ( G `  x )  e.  S )
2013, 19syldan 487 . . . 4  |-  ( ( ( ph  /\  n  e.  ( M..^ N ) )  /\  x  e.  ( M ... n
) )  ->  ( G `  x )  e.  S )
211adantlr 751 . . . 4  |-  ( ( ( ph  /\  n  e.  ( M..^ N ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
228, 20, 21seqcl 12821 . . 3  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  (  seq M
(  .+  ,  G
) `  n )  e.  S )
23 fzofzp1 12565 . . . 4  |-  ( n  e.  ( M..^ N
)  ->  ( n  +  1 )  e.  ( M ... N
) )
24 fveq2 6191 . . . . . 6  |-  ( k  =  ( n  + 
1 )  ->  ( G `  k )  =  ( G `  ( n  +  1
) ) )
2524eleq1d 2686 . . . . 5  |-  ( k  =  ( n  + 
1 )  ->  (
( G `  k
)  e.  S  <->  ( G `  ( n  +  1 ) )  e.  S
) )
2625rspccva 3308 . . . 4  |-  ( ( A. k  e.  ( M ... N ) ( G `  k
)  e.  S  /\  ( n  +  1
)  e.  ( M ... N ) )  ->  ( G `  ( n  +  1
) )  e.  S
)
2714, 23, 26syl2an 494 . . 3  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( G `  ( n  +  1
) )  e.  S
)
284ralrimiva 2966 . . . . . . . 8  |-  ( ph  ->  A. k  e.  ( M ... N ) ( F `  k
)  e.  S )
29 fveq2 6191 . . . . . . . . . 10  |-  ( k  =  x  ->  ( F `  k )  =  ( F `  x ) )
3029eleq1d 2686 . . . . . . . . 9  |-  ( k  =  x  ->  (
( F `  k
)  e.  S  <->  ( F `  x )  e.  S
) )
3130rspccva 3308 . . . . . . . 8  |-  ( ( A. k  e.  ( M ... N ) ( F `  k
)  e.  S  /\  x  e.  ( M ... N ) )  -> 
( F `  x
)  e.  S )
3228, 31sylan 488 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( F `  x )  e.  S
)
3332adantlr 751 . . . . . 6  |-  ( ( ( ph  /\  n  e.  ( M..^ N ) )  /\  x  e.  ( M ... N
) )  ->  ( F `  x )  e.  S )
3413, 33syldan 487 . . . . 5  |-  ( ( ( ph  /\  n  e.  ( M..^ N ) )  /\  x  e.  ( M ... n
) )  ->  ( F `  x )  e.  S )
358, 34, 21seqcl 12821 . . . 4  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  (  seq M
(  .+  ,  F
) `  n )  e.  S )
36 fveq2 6191 . . . . . . 7  |-  ( k  =  ( n  + 
1 )  ->  ( F `  k )  =  ( F `  ( n  +  1
) ) )
3736eleq1d 2686 . . . . . 6  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  k
)  e.  S  <->  ( F `  ( n  +  1 ) )  e.  S
) )
3837rspccva 3308 . . . . 5  |-  ( ( A. k  e.  ( M ... N ) ( F `  k
)  e.  S  /\  ( n  +  1
)  e.  ( M ... N ) )  ->  ( F `  ( n  +  1
) )  e.  S
)
3928, 23, 38syl2an 494 . . . 4  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( F `  ( n  +  1
) )  e.  S
)
40 seqcaopr2.3 . . . . . . . 8  |-  ( (
ph  /\  ( (
x  e.  S  /\  y  e.  S )  /\  ( z  e.  S  /\  w  e.  S
) ) )  -> 
( ( x Q z )  .+  (
y Q w ) )  =  ( ( x  .+  y ) Q ( z  .+  w ) ) )
4140anassrs 680 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  S  /\  y  e.  S )
)  /\  ( z  e.  S  /\  w  e.  S ) )  -> 
( ( x Q z )  .+  (
y Q w ) )  =  ( ( x  .+  y ) Q ( z  .+  w ) ) )
4241ralrimivva 2971 . . . . . 6  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  A. z  e.  S  A. w  e.  S  ( ( x Q z )  .+  (
y Q w ) )  =  ( ( x  .+  y ) Q ( z  .+  w ) ) )
4342ralrimivva 2971 . . . . 5  |-  ( ph  ->  A. x  e.  S  A. y  e.  S  A. z  e.  S  A. w  e.  S  ( ( x Q z )  .+  (
y Q w ) )  =  ( ( x  .+  y ) Q ( z  .+  w ) ) )
4443adantr 481 . . . 4  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  A. x  e.  S  A. y  e.  S  A. z  e.  S  A. w  e.  S  ( ( x Q z )  .+  (
y Q w ) )  =  ( ( x  .+  y ) Q ( z  .+  w ) ) )
45 oveq1 6657 . . . . . . . 8  |-  ( x  =  (  seq M
(  .+  ,  F
) `  n )  ->  ( x Q z )  =  ( (  seq M (  .+  ,  F ) `  n
) Q z ) )
4645oveq1d 6665 . . . . . . 7  |-  ( x  =  (  seq M
(  .+  ,  F
) `  n )  ->  ( ( x Q z )  .+  (
y Q w ) )  =  ( ( (  seq M ( 
.+  ,  F ) `
 n ) Q z )  .+  (
y Q w ) ) )
47 oveq1 6657 . . . . . . . 8  |-  ( x  =  (  seq M
(  .+  ,  F
) `  n )  ->  ( x  .+  y
)  =  ( (  seq M (  .+  ,  F ) `  n
)  .+  y )
)
4847oveq1d 6665 . . . . . . 7  |-  ( x  =  (  seq M
(  .+  ,  F
) `  n )  ->  ( ( x  .+  y ) Q ( z  .+  w ) )  =  ( ( (  seq M ( 
.+  ,  F ) `
 n )  .+  y ) Q ( z  .+  w ) ) )
4946, 48eqeq12d 2637 . . . . . 6  |-  ( x  =  (  seq M
(  .+  ,  F
) `  n )  ->  ( ( ( x Q z )  .+  ( y Q w ) )  =  ( ( x  .+  y
) Q ( z 
.+  w ) )  <-> 
( ( (  seq M (  .+  ,  F ) `  n
) Q z ) 
.+  ( y Q w ) )  =  ( ( (  seq M (  .+  ,  F ) `  n
)  .+  y ) Q ( z  .+  w ) ) ) )
50492ralbidv 2989 . . . . 5  |-  ( x  =  (  seq M
(  .+  ,  F
) `  n )  ->  ( A. z  e.  S  A. w  e.  S  ( ( x Q z )  .+  ( y Q w ) )  =  ( ( x  .+  y
) Q ( z 
.+  w ) )  <->  A. z  e.  S  A. w  e.  S  ( ( (  seq M (  .+  ,  F ) `  n
) Q z ) 
.+  ( y Q w ) )  =  ( ( (  seq M (  .+  ,  F ) `  n
)  .+  y ) Q ( z  .+  w ) ) ) )
51 oveq1 6657 . . . . . . . 8  |-  ( y  =  ( F `  ( n  +  1
) )  ->  (
y Q w )  =  ( ( F `
 ( n  + 
1 ) ) Q w ) )
5251oveq2d 6666 . . . . . . 7  |-  ( y  =  ( F `  ( n  +  1
) )  ->  (
( (  seq M
(  .+  ,  F
) `  n ) Q z )  .+  ( y Q w ) )  =  ( ( (  seq M
(  .+  ,  F
) `  n ) Q z )  .+  ( ( F `  ( n  +  1
) ) Q w ) ) )
53 oveq2 6658 . . . . . . . 8  |-  ( y  =  ( F `  ( n  +  1
) )  ->  (
(  seq M (  .+  ,  F ) `  n
)  .+  y )  =  ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) )
5453oveq1d 6665 . . . . . . 7  |-  ( y  =  ( F `  ( n  +  1
) )  ->  (
( (  seq M
(  .+  ,  F
) `  n )  .+  y ) Q ( z  .+  w ) )  =  ( ( (  seq M ( 
.+  ,  F ) `
 n )  .+  ( F `  ( n  +  1 ) ) ) Q ( z 
.+  w ) ) )
5552, 54eqeq12d 2637 . . . . . 6  |-  ( y  =  ( F `  ( n  +  1
) )  ->  (
( ( (  seq M (  .+  ,  F ) `  n
) Q z ) 
.+  ( y Q w ) )  =  ( ( (  seq M (  .+  ,  F ) `  n
)  .+  y ) Q ( z  .+  w ) )  <->  ( (
(  seq M (  .+  ,  F ) `  n
) Q z ) 
.+  ( ( F `
 ( n  + 
1 ) ) Q w ) )  =  ( ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) Q ( z  .+  w
) ) ) )
56552ralbidv 2989 . . . . 5  |-  ( y  =  ( F `  ( n  +  1
) )  ->  ( A. z  e.  S  A. w  e.  S  ( ( (  seq M (  .+  ,  F ) `  n
) Q z ) 
.+  ( y Q w ) )  =  ( ( (  seq M (  .+  ,  F ) `  n
)  .+  y ) Q ( z  .+  w ) )  <->  A. z  e.  S  A. w  e.  S  ( (
(  seq M (  .+  ,  F ) `  n
) Q z ) 
.+  ( ( F `
 ( n  + 
1 ) ) Q w ) )  =  ( ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) Q ( z  .+  w
) ) ) )
5750, 56rspc2va 3323 . . . 4  |-  ( ( ( (  seq M
(  .+  ,  F
) `  n )  e.  S  /\  ( F `  ( n  +  1 ) )  e.  S )  /\  A. x  e.  S  A. y  e.  S  A. z  e.  S  A. w  e.  S  (
( x Q z )  .+  ( y Q w ) )  =  ( ( x 
.+  y ) Q ( z  .+  w
) ) )  ->  A. z  e.  S  A. w  e.  S  ( ( (  seq M (  .+  ,  F ) `  n
) Q z ) 
.+  ( ( F `
 ( n  + 
1 ) ) Q w ) )  =  ( ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) Q ( z  .+  w
) ) )
5835, 39, 44, 57syl21anc 1325 . . 3  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  A. z  e.  S  A. w  e.  S  ( ( (  seq M (  .+  ,  F ) `  n
) Q z ) 
.+  ( ( F `
 ( n  + 
1 ) ) Q w ) )  =  ( ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) Q ( z  .+  w
) ) )
59 oveq2 6658 . . . . . 6  |-  ( z  =  (  seq M
(  .+  ,  G
) `  n )  ->  ( (  seq M
(  .+  ,  F
) `  n ) Q z )  =  ( (  seq M
(  .+  ,  F
) `  n ) Q (  seq M
(  .+  ,  G
) `  n )
) )
6059oveq1d 6665 . . . . 5  |-  ( z  =  (  seq M
(  .+  ,  G
) `  n )  ->  ( ( (  seq M (  .+  ,  F ) `  n
) Q z ) 
.+  ( ( F `
 ( n  + 
1 ) ) Q w ) )  =  ( ( (  seq M (  .+  ,  F ) `  n
) Q (  seq M (  .+  ,  G ) `  n
) )  .+  (
( F `  (
n  +  1 ) ) Q w ) ) )
61 oveq1 6657 . . . . . 6  |-  ( z  =  (  seq M
(  .+  ,  G
) `  n )  ->  ( z  .+  w
)  =  ( (  seq M (  .+  ,  G ) `  n
)  .+  w )
)
6261oveq2d 6666 . . . . 5  |-  ( z  =  (  seq M
(  .+  ,  G
) `  n )  ->  ( ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) Q ( z  .+  w
) )  =  ( ( (  seq M
(  .+  ,  F
) `  n )  .+  ( F `  (
n  +  1 ) ) ) Q ( (  seq M ( 
.+  ,  G ) `
 n )  .+  w ) ) )
6360, 62eqeq12d 2637 . . . 4  |-  ( z  =  (  seq M
(  .+  ,  G
) `  n )  ->  ( ( ( (  seq M (  .+  ,  F ) `  n
) Q z ) 
.+  ( ( F `
 ( n  + 
1 ) ) Q w ) )  =  ( ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) Q ( z  .+  w
) )  <->  ( (
(  seq M (  .+  ,  F ) `  n
) Q (  seq M (  .+  ,  G ) `  n
) )  .+  (
( F `  (
n  +  1 ) ) Q w ) )  =  ( ( (  seq M ( 
.+  ,  F ) `
 n )  .+  ( F `  ( n  +  1 ) ) ) Q ( (  seq M (  .+  ,  G ) `  n
)  .+  w )
) ) )
64 oveq2 6658 . . . . . 6  |-  ( w  =  ( G `  ( n  +  1
) )  ->  (
( F `  (
n  +  1 ) ) Q w )  =  ( ( F `
 ( n  + 
1 ) ) Q ( G `  (
n  +  1 ) ) ) )
6564oveq2d 6666 . . . . 5  |-  ( w  =  ( G `  ( n  +  1
) )  ->  (
( (  seq M
(  .+  ,  F
) `  n ) Q (  seq M
(  .+  ,  G
) `  n )
)  .+  ( ( F `  ( n  +  1 ) ) Q w ) )  =  ( ( (  seq M (  .+  ,  F ) `  n
) Q (  seq M (  .+  ,  G ) `  n
) )  .+  (
( F `  (
n  +  1 ) ) Q ( G `
 ( n  + 
1 ) ) ) ) )
66 oveq2 6658 . . . . . 6  |-  ( w  =  ( G `  ( n  +  1
) )  ->  (
(  seq M (  .+  ,  G ) `  n
)  .+  w )  =  ( (  seq M (  .+  ,  G ) `  n
)  .+  ( G `  ( n  +  1 ) ) ) )
6766oveq2d 6666 . . . . 5  |-  ( w  =  ( G `  ( n  +  1
) )  ->  (
( (  seq M
(  .+  ,  F
) `  n )  .+  ( F `  (
n  +  1 ) ) ) Q ( (  seq M ( 
.+  ,  G ) `
 n )  .+  w ) )  =  ( ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) Q ( (  seq M
(  .+  ,  G
) `  n )  .+  ( G `  (
n  +  1 ) ) ) ) )
6865, 67eqeq12d 2637 . . . 4  |-  ( w  =  ( G `  ( n  +  1
) )  ->  (
( ( (  seq M (  .+  ,  F ) `  n
) Q (  seq M (  .+  ,  G ) `  n
) )  .+  (
( F `  (
n  +  1 ) ) Q w ) )  =  ( ( (  seq M ( 
.+  ,  F ) `
 n )  .+  ( F `  ( n  +  1 ) ) ) Q ( (  seq M (  .+  ,  G ) `  n
)  .+  w )
)  <->  ( ( (  seq M (  .+  ,  F ) `  n
) Q (  seq M (  .+  ,  G ) `  n
) )  .+  (
( F `  (
n  +  1 ) ) Q ( G `
 ( n  + 
1 ) ) ) )  =  ( ( (  seq M ( 
.+  ,  F ) `
 n )  .+  ( F `  ( n  +  1 ) ) ) Q ( (  seq M (  .+  ,  G ) `  n
)  .+  ( G `  ( n  +  1 ) ) ) ) ) )
6963, 68rspc2va 3323 . . 3  |-  ( ( ( (  seq M
(  .+  ,  G
) `  n )  e.  S  /\  ( G `  ( n  +  1 ) )  e.  S )  /\  A. z  e.  S  A. w  e.  S  (
( (  seq M
(  .+  ,  F
) `  n ) Q z )  .+  ( ( F `  ( n  +  1
) ) Q w ) )  =  ( ( (  seq M
(  .+  ,  F
) `  n )  .+  ( F `  (
n  +  1 ) ) ) Q ( z  .+  w ) ) )  ->  (
( (  seq M
(  .+  ,  F
) `  n ) Q (  seq M
(  .+  ,  G
) `  n )
)  .+  ( ( F `  ( n  +  1 ) ) Q ( G `  ( n  +  1
) ) ) )  =  ( ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) Q ( (  seq M
(  .+  ,  G
) `  n )  .+  ( G `  (
n  +  1 ) ) ) ) )
7022, 27, 58, 69syl21anc 1325 . 2  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( ( (  seq M (  .+  ,  F ) `  n
) Q (  seq M (  .+  ,  G ) `  n
) )  .+  (
( F `  (
n  +  1 ) ) Q ( G `
 ( n  + 
1 ) ) ) )  =  ( ( (  seq M ( 
.+  ,  F ) `
 n )  .+  ( F `  ( n  +  1 ) ) ) Q ( (  seq M (  .+  ,  G ) `  n
)  .+  ( G `  ( n  +  1 ) ) ) ) )
711, 2, 3, 4, 5, 6, 70seqcaopr3 12836 1  |-  ( ph  ->  (  seq M ( 
.+  ,  H ) `
 N )  =  ( (  seq M
(  .+  ,  F
) `  N ) Q (  seq M
(  .+  ,  G
) `  N )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574   ` cfv 5888  (class class class)co 6650   1c1 9937    + caddc 9939   ZZ>=cuz 11687   ...cfz 12326  ..^cfzo 12465    seqcseq 12801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802
This theorem is referenced by:  seqcaopr  12838  sersub  12844
  Copyright terms: Public domain W3C validator