MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqcaopr Structured version   Visualization version   Unicode version

Theorem seqcaopr 12838
Description: The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 30-May-2014.)
Hypotheses
Ref Expression
seqcaopr.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
seqcaopr.2  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  =  ( y 
.+  x ) )
seqcaopr.3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
seqcaopr.4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
seqcaopr.5  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  S
)
seqcaopr.6  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( G `  k )  e.  S
)
seqcaopr.7  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( H `  k )  =  ( ( F `  k
)  .+  ( G `  k ) ) )
Assertion
Ref Expression
seqcaopr  |-  ( ph  ->  (  seq M ( 
.+  ,  H ) `
 N )  =  ( (  seq M
(  .+  ,  F
) `  N )  .+  (  seq M ( 
.+  ,  G ) `
 N ) ) )
Distinct variable groups:    k, F    k, G    k, H    x, k, y, z, ph    k, M    .+ , k, x, y, z    S, k, x, y, z   
k, N
Allowed substitution hints:    F( x, y, z)    G( x, y, z)    H( x, y, z)    M( x, y, z)    N( x, y, z)

Proof of Theorem seqcaopr
Dummy variables  a 
b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqcaopr.1 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
21caovclg 6826 . 2  |-  ( (
ph  /\  ( a  e.  S  /\  b  e.  S ) )  -> 
( a  .+  b
)  e.  S )
3 simpl 473 . . . . . . 7  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  ->  ph )
4 simprrl 804 . . . . . . 7  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
c  e.  S )
5 simprlr 803 . . . . . . 7  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
b  e.  S )
6 seqcaopr.2 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  =  ( y 
.+  x ) )
76caovcomg 6829 . . . . . . 7  |-  ( (
ph  /\  ( c  e.  S  /\  b  e.  S ) )  -> 
( c  .+  b
)  =  ( b 
.+  c ) )
83, 4, 5, 7syl12anc 1324 . . . . . 6  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
( c  .+  b
)  =  ( b 
.+  c ) )
98oveq1d 6665 . . . . 5  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
( ( c  .+  b )  .+  d
)  =  ( ( b  .+  c ) 
.+  d ) )
10 simprrr 805 . . . . . 6  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
d  e.  S )
11 seqcaopr.3 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
1211caovassg 6832 . . . . . 6  |-  ( (
ph  /\  ( c  e.  S  /\  b  e.  S  /\  d  e.  S ) )  -> 
( ( c  .+  b )  .+  d
)  =  ( c 
.+  ( b  .+  d ) ) )
133, 4, 5, 10, 12syl13anc 1328 . . . . 5  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
( ( c  .+  b )  .+  d
)  =  ( c 
.+  ( b  .+  d ) ) )
1411caovassg 6832 . . . . . 6  |-  ( (
ph  /\  ( b  e.  S  /\  c  e.  S  /\  d  e.  S ) )  -> 
( ( b  .+  c )  .+  d
)  =  ( b 
.+  ( c  .+  d ) ) )
153, 5, 4, 10, 14syl13anc 1328 . . . . 5  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
( ( b  .+  c )  .+  d
)  =  ( b 
.+  ( c  .+  d ) ) )
169, 13, 153eqtr3d 2664 . . . 4  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
( c  .+  (
b  .+  d )
)  =  ( b 
.+  ( c  .+  d ) ) )
1716oveq2d 6666 . . 3  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
( a  .+  (
c  .+  ( b  .+  d ) ) )  =  ( a  .+  ( b  .+  (
c  .+  d )
) ) )
18 simprll 802 . . . 4  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
a  e.  S )
191caovclg 6826 . . . . 5  |-  ( (
ph  /\  ( b  e.  S  /\  d  e.  S ) )  -> 
( b  .+  d
)  e.  S )
203, 5, 10, 19syl12anc 1324 . . . 4  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
( b  .+  d
)  e.  S )
2111caovassg 6832 . . . 4  |-  ( (
ph  /\  ( a  e.  S  /\  c  e.  S  /\  (
b  .+  d )  e.  S ) )  -> 
( ( a  .+  c )  .+  (
b  .+  d )
)  =  ( a 
.+  ( c  .+  ( b  .+  d
) ) ) )
223, 18, 4, 20, 21syl13anc 1328 . . 3  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
( ( a  .+  c )  .+  (
b  .+  d )
)  =  ( a 
.+  ( c  .+  ( b  .+  d
) ) ) )
231caovclg 6826 . . . . 5  |-  ( (
ph  /\  ( c  e.  S  /\  d  e.  S ) )  -> 
( c  .+  d
)  e.  S )
2423adantrl 752 . . . 4  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
( c  .+  d
)  e.  S )
2511caovassg 6832 . . . 4  |-  ( (
ph  /\  ( a  e.  S  /\  b  e.  S  /\  (
c  .+  d )  e.  S ) )  -> 
( ( a  .+  b )  .+  (
c  .+  d )
)  =  ( a 
.+  ( b  .+  ( c  .+  d
) ) ) )
263, 18, 5, 24, 25syl13anc 1328 . . 3  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
( ( a  .+  b )  .+  (
c  .+  d )
)  =  ( a 
.+  ( b  .+  ( c  .+  d
) ) ) )
2717, 22, 263eqtr4d 2666 . 2  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
( ( a  .+  c )  .+  (
b  .+  d )
)  =  ( ( a  .+  b ) 
.+  ( c  .+  d ) ) )
28 seqcaopr.4 . 2  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
29 seqcaopr.5 . 2  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  S
)
30 seqcaopr.6 . 2  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( G `  k )  e.  S
)
31 seqcaopr.7 . 2  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( H `  k )  =  ( ( F `  k
)  .+  ( G `  k ) ) )
322, 2, 27, 28, 29, 30, 31seqcaopr2 12837 1  |-  ( ph  ->  (  seq M ( 
.+  ,  H ) `
 N )  =  ( (  seq M
(  .+  ,  F
) `  N )  .+  (  seq M ( 
.+  ,  G ) `
 N ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   ` cfv 5888  (class class class)co 6650   ZZ>=cuz 11687   ...cfz 12326    seqcseq 12801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802
This theorem is referenced by:  seradd  12843  prodfmul  14622  mulgnn0di  18231  lgsdir  25057  lgsdi  25059
  Copyright terms: Public domain W3C validator