MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqid Structured version   Visualization version   Unicode version

Theorem seqid 12846
Description: Discard the first few terms of a sequence that starts with all zeroes (or whatever the identity  Z is for operation  .+). (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
seqid.1  |-  ( (
ph  /\  x  e.  S )  ->  ( Z  .+  x )  =  x )
seqid.2  |-  ( ph  ->  Z  e.  S )
seqid.3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
seqid.4  |-  ( ph  ->  ( F `  N
)  e.  S )
seqid.5  |-  ( (
ph  /\  x  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  x )  =  Z )
Assertion
Ref Expression
seqid  |-  ( ph  ->  (  seq M ( 
.+  ,  F )  |`  ( ZZ>= `  N )
)  =  seq N
(  .+  ,  F
) )
Distinct variable groups:    x,  .+    x, F    x, M    x, N    x, S    x, Z    ph, x

Proof of Theorem seqid
StepHypRef Expression
1 seqid.3 . 2  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzelz 11697 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
3 seq1 12814 . . . . 5  |-  ( N  e.  ZZ  ->  (  seq N (  .+  ,  F ) `  N
)  =  ( F `
 N ) )
41, 2, 33syl 18 . . . 4  |-  ( ph  ->  (  seq N ( 
.+  ,  F ) `
 N )  =  ( F `  N
) )
5 seqeq1 12804 . . . . . 6  |-  ( N  =  M  ->  seq N (  .+  ,  F )  =  seq M (  .+  ,  F ) )
65fveq1d 6193 . . . . 5  |-  ( N  =  M  ->  (  seq N (  .+  ,  F ) `  N
)  =  (  seq M (  .+  ,  F ) `  N
) )
76eqeq1d 2624 . . . 4  |-  ( N  =  M  ->  (
(  seq N (  .+  ,  F ) `  N
)  =  ( F `
 N )  <->  (  seq M (  .+  ,  F ) `  N
)  =  ( F `
 N ) ) )
84, 7syl5ibcom 235 . . 3  |-  ( ph  ->  ( N  =  M  ->  (  seq M
(  .+  ,  F
) `  N )  =  ( F `  N ) ) )
9 eluzel2 11692 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
101, 9syl 17 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
11 seqm1 12818 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
(  seq M (  .+  ,  F ) `  N
)  =  ( (  seq M (  .+  ,  F ) `  ( N  -  1 ) )  .+  ( F `
 N ) ) )
1210, 11sylan 488 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  (  seq M (  .+  ,  F ) `  N
)  =  ( (  seq M (  .+  ,  F ) `  ( N  -  1 ) )  .+  ( F `
 N ) ) )
13 seqid.2 . . . . . . . . 9  |-  ( ph  ->  Z  e.  S )
14 seqid.1 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  S )  ->  ( Z  .+  x )  =  x )
1514ralrimiva 2966 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  S  ( Z  .+  x )  =  x )
16 oveq2 6658 . . . . . . . . . . 11  |-  ( x  =  Z  ->  ( Z  .+  x )  =  ( Z  .+  Z
) )
17 id 22 . . . . . . . . . . 11  |-  ( x  =  Z  ->  x  =  Z )
1816, 17eqeq12d 2637 . . . . . . . . . 10  |-  ( x  =  Z  ->  (
( Z  .+  x
)  =  x  <->  ( Z  .+  Z )  =  Z ) )
1918rspcv 3305 . . . . . . . . 9  |-  ( Z  e.  S  ->  ( A. x  e.  S  ( Z  .+  x )  =  x  ->  ( Z  .+  Z )  =  Z ) )
2013, 15, 19sylc 65 . . . . . . . 8  |-  ( ph  ->  ( Z  .+  Z
)  =  Z )
2120adantr 481 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( Z  .+  Z )  =  Z )
22 eluzp1m1 11711 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
( N  -  1 )  e.  ( ZZ>= `  M ) )
2310, 22sylan 488 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( N  -  1 )  e.  ( ZZ>= `  M )
)
24 seqid.5 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  x )  =  Z )
2524adantlr 751 . . . . . . 7  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  x  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  x )  =  Z )
2621, 23, 25seqid3 12845 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  (  seq M (  .+  ,  F ) `  ( N  -  1 ) )  =  Z )
2726oveq1d 6665 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( (  seq M (  .+  ,  F ) `  ( N  -  1 ) )  .+  ( F `
 N ) )  =  ( Z  .+  ( F `  N ) ) )
28 seqid.4 . . . . . . 7  |-  ( ph  ->  ( F `  N
)  e.  S )
2928adantr 481 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  N )  e.  S
)
3015adantr 481 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  A. x  e.  S  ( Z  .+  x )  =  x )
31 oveq2 6658 . . . . . . . 8  |-  ( x  =  ( F `  N )  ->  ( Z  .+  x )  =  ( Z  .+  ( F `  N )
) )
32 id 22 . . . . . . . 8  |-  ( x  =  ( F `  N )  ->  x  =  ( F `  N ) )
3331, 32eqeq12d 2637 . . . . . . 7  |-  ( x  =  ( F `  N )  ->  (
( Z  .+  x
)  =  x  <->  ( Z  .+  ( F `  N
) )  =  ( F `  N ) ) )
3433rspcv 3305 . . . . . 6  |-  ( ( F `  N )  e.  S  ->  ( A. x  e.  S  ( Z  .+  x )  =  x  ->  ( Z  .+  ( F `  N ) )  =  ( F `  N
) ) )
3529, 30, 34sylc 65 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( Z  .+  ( F `  N
) )  =  ( F `  N ) )
3612, 27, 353eqtrd 2660 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  (  seq M (  .+  ,  F ) `  N
)  =  ( F `
 N ) )
3736ex 450 . . 3  |-  ( ph  ->  ( N  e.  (
ZZ>= `  ( M  + 
1 ) )  -> 
(  seq M (  .+  ,  F ) `  N
)  =  ( F `
 N ) ) )
38 uzp1 11721 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  =  M  \/  N  e.  ( ZZ>= `  ( M  +  1 ) ) ) )
391, 38syl 17 . . 3  |-  ( ph  ->  ( N  =  M  \/  N  e.  (
ZZ>= `  ( M  + 
1 ) ) ) )
408, 37, 39mpjaod 396 . 2  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  =  ( F `  N
) )
41 eqidd 2623 . 2  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( F `  x )  =  ( F `  x ) )
421, 40, 41seqfeq2 12824 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F )  |`  ( ZZ>= `  N )
)  =  seq N
(  .+  ,  F
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    |` cres 5116   ` cfv 5888  (class class class)co 6650   1c1 9937    + caddc 9939    - cmin 10266   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326    seqcseq 12801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802
This theorem is referenced by:  seqcoll  13248  sumrblem  14442  prodrblem  14659  logtayl  24406  leibpilem2  24668
  Copyright terms: Public domain W3C validator