MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smuval Structured version   Visualization version   Unicode version

Theorem smuval 15203
Description: Define the addition of two bit sequences, using df-had 1533 and df-cad 1546 bit operations. (Contributed by Mario Carneiro, 9-Sep-2016.)
Hypotheses
Ref Expression
smuval.a  |-  ( ph  ->  A  C_  NN0 )
smuval.b  |-  ( ph  ->  B  C_  NN0 )
smuval.p  |-  P  =  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) )
smuval.n  |-  ( ph  ->  N  e.  NN0 )
Assertion
Ref Expression
smuval  |-  ( ph  ->  ( N  e.  ( A smul  B )  <->  N  e.  ( P `  ( N  +  1 ) ) ) )
Distinct variable groups:    m, n, p, A    n, N    ph, n    B, m, n, p
Allowed substitution hints:    ph( m, p)    P( m, n, p)    N( m, p)

Proof of Theorem smuval
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 smuval.a . . . 4  |-  ( ph  ->  A  C_  NN0 )
2 smuval.b . . . 4  |-  ( ph  ->  B  C_  NN0 )
3 smuval.p . . . 4  |-  P  =  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) )
41, 2, 3smufval 15199 . . 3  |-  ( ph  ->  ( A smul  B )  =  { k  e. 
NN0  |  k  e.  ( P `  ( k  +  1 ) ) } )
54eleq2d 2687 . 2  |-  ( ph  ->  ( N  e.  ( A smul  B )  <->  N  e.  { k  e.  NN0  | 
k  e.  ( P `
 ( k  +  1 ) ) } ) )
6 smuval.n . . 3  |-  ( ph  ->  N  e.  NN0 )
7 id 22 . . . . 5  |-  ( k  =  N  ->  k  =  N )
8 oveq1 6657 . . . . . 6  |-  ( k  =  N  ->  (
k  +  1 )  =  ( N  + 
1 ) )
98fveq2d 6195 . . . . 5  |-  ( k  =  N  ->  ( P `  ( k  +  1 ) )  =  ( P `  ( N  +  1
) ) )
107, 9eleq12d 2695 . . . 4  |-  ( k  =  N  ->  (
k  e.  ( P `
 ( k  +  1 ) )  <->  N  e.  ( P `  ( N  +  1 ) ) ) )
1110elrab3 3364 . . 3  |-  ( N  e.  NN0  ->  ( N  e.  { k  e. 
NN0  |  k  e.  ( P `  ( k  +  1 ) ) }  <->  N  e.  ( P `  ( N  +  1 ) ) ) )
126, 11syl 17 . 2  |-  ( ph  ->  ( N  e.  {
k  e.  NN0  | 
k  e.  ( P `
 ( k  +  1 ) ) }  <-> 
N  e.  ( P `
 ( N  + 
1 ) ) ) )
135, 12bitrd 268 1  |-  ( ph  ->  ( N  e.  ( A smul  B )  <->  N  e.  ( P `  ( N  +  1 ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916    C_ wss 3574   (/)c0 3915   ifcif 4086   ~Pcpw 4158    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   0cc0 9936   1c1 9937    + caddc 9939    - cmin 10266   NN0cn0 11292    seqcseq 12801   sadd csad 15142   smul csmu 15143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-i2m1 10004  ax-1ne0 10005  ax-rrecex 10008  ax-cnre 10009
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-nn 11021  df-n0 11293  df-seq 12802  df-smu 15198
This theorem is referenced by:  smuval2  15204  smupvallem  15205  smu01lem  15207
  Copyright terms: Public domain W3C validator