MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smu01lem Structured version   Visualization version   Unicode version

Theorem smu01lem 15207
Description: Lemma for smu01 15208 and smu02 15209. (Contributed by Mario Carneiro, 19-Sep-2016.)
Hypotheses
Ref Expression
smu01lem.1  |-  ( ph  ->  A  C_  NN0 )
smu01lem.2  |-  ( ph  ->  B  C_  NN0 )
smu01lem.3  |-  ( (
ph  /\  ( k  e.  NN0  /\  n  e. 
NN0 ) )  ->  -.  ( k  e.  A  /\  ( n  -  k
)  e.  B ) )
Assertion
Ref Expression
smu01lem  |-  ( ph  ->  ( A smul  B )  =  (/) )
Distinct variable groups:    k, n, A    B, k, n    ph, k, n

Proof of Theorem smu01lem
Dummy variables  m  p  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smu01lem.1 . . . . . 6  |-  ( ph  ->  A  C_  NN0 )
2 smu01lem.2 . . . . . 6  |-  ( ph  ->  B  C_  NN0 )
3 smucl 15206 . . . . . 6  |-  ( ( A  C_  NN0  /\  B  C_ 
NN0 )  ->  ( A smul  B )  C_  NN0 )
41, 2, 3syl2anc 693 . . . . 5  |-  ( ph  ->  ( A smul  B ) 
C_  NN0 )
54sseld 3602 . . . 4  |-  ( ph  ->  ( k  e.  ( A smul  B )  -> 
k  e.  NN0 )
)
6 noel 3919 . . . . . . 7  |-  -.  k  e.  (/)
7 peano2nn0 11333 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( k  +  1 )  e. 
NN0 )
8 fveq2 6191 . . . . . . . . . . . . 13  |-  ( x  =  0  ->  (  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `  x
)  =  (  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `  0
) )
98eqeq1d 2624 . . . . . . . . . . . 12  |-  ( x  =  0  ->  (
(  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `  x
)  =  (/)  <->  (  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `  0
)  =  (/) ) )
109imbi2d 330 . . . . . . . . . . 11  |-  ( x  =  0  ->  (
( ph  ->  (  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `  x
)  =  (/) )  <->  ( ph  ->  (  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e. 
NN0  |  ( m  e.  A  /\  (
n  -  m )  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) ) `  0 )  =  (/) ) ) )
11 fveq2 6191 . . . . . . . . . . . . 13  |-  ( x  =  k  ->  (  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `  x
)  =  (  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `  k
) )
1211eqeq1d 2624 . . . . . . . . . . . 12  |-  ( x  =  k  ->  (
(  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `  x
)  =  (/)  <->  (  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `  k
)  =  (/) ) )
1312imbi2d 330 . . . . . . . . . . 11  |-  ( x  =  k  ->  (
( ph  ->  (  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `  x
)  =  (/) )  <->  ( ph  ->  (  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e. 
NN0  |  ( m  e.  A  /\  (
n  -  m )  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) ) `  k )  =  (/) ) ) )
14 fveq2 6191 . . . . . . . . . . . . 13  |-  ( x  =  ( k  +  1 )  ->  (  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `  x
)  =  (  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `  (
k  +  1 ) ) )
1514eqeq1d 2624 . . . . . . . . . . . 12  |-  ( x  =  ( k  +  1 )  ->  (
(  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `  x
)  =  (/)  <->  (  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `  (
k  +  1 ) )  =  (/) ) )
1615imbi2d 330 . . . . . . . . . . 11  |-  ( x  =  ( k  +  1 )  ->  (
( ph  ->  (  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `  x
)  =  (/) )  <->  ( ph  ->  (  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e. 
NN0  |  ( m  e.  A  /\  (
n  -  m )  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) ) `  ( k  +  1 ) )  =  (/) ) ) )
17 eqid 2622 . . . . . . . . . . . 12  |-  seq 0
( ( p  e. 
~P NN0 ,  m  e. 
NN0  |->  ( p sadd  {
n  e.  NN0  | 
( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) )  =  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) )
181, 2, 17smup0 15201 . . . . . . . . . . 11  |-  ( ph  ->  (  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e. 
NN0  |  ( m  e.  A  /\  (
n  -  m )  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) ) `  0 )  =  (/) )
19 oveq1 6657 . . . . . . . . . . . . . 14  |-  ( (  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `  k
)  =  (/)  ->  (
(  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `  k
) sadd  { n  e.  NN0  |  ( k  e.  A  /\  ( n  -  k
)  e.  B ) } )  =  (
(/) sadd  { n  e.  NN0  |  ( k  e.  A  /\  ( n  -  k
)  e.  B ) } ) )
201adantr 481 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  NN0 )  ->  A  C_  NN0 )
212adantr 481 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  NN0 )  ->  B  C_  NN0 )
22 simpr 477 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  NN0 )  ->  k  e.  NN0 )
2320, 21, 17, 22smupp1 15202 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  NN0 )  ->  (  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `  (
k  +  1 ) )  =  ( (  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `  k
) sadd  { n  e.  NN0  |  ( k  e.  A  /\  ( n  -  k
)  e.  B ) } ) )
24 smu01lem.3 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( k  e.  NN0  /\  n  e. 
NN0 ) )  ->  -.  ( k  e.  A  /\  ( n  -  k
)  e.  B ) )
2524anassrs 680 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  n  e.  NN0 )  ->  -.  ( k  e.  A  /\  ( n  -  k
)  e.  B ) )
2625ralrimiva 2966 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  NN0 )  ->  A. n  e.  NN0  -.  ( k  e.  A  /\  (
n  -  k )  e.  B ) )
27 rabeq0 3957 . . . . . . . . . . . . . . . . . 18  |-  ( { n  e.  NN0  | 
( k  e.  A  /\  ( n  -  k
)  e.  B ) }  =  (/)  <->  A. n  e.  NN0  -.  ( k  e.  A  /\  (
n  -  k )  e.  B ) )
2826, 27sylibr 224 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  NN0 )  ->  { n  e.  NN0  |  ( k  e.  A  /\  (
n  -  k )  e.  B ) }  =  (/) )
2928oveq2d 6666 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (/) sadd  { n  e.  NN0  |  ( k  e.  A  /\  (
n  -  k )  e.  B ) } )  =  ( (/) sadd  (/) ) )
30 0ss 3972 . . . . . . . . . . . . . . . . 17  |-  (/)  C_  NN0
31 sadid1 15190 . . . . . . . . . . . . . . . . 17  |-  ( (/)  C_ 
NN0  ->  ( (/) sadd  (/) )  =  (/) )
3230, 31mp1i 13 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (/) sadd  (/) )  =  (/) )
3329, 32eqtr2d 2657 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  NN0 )  ->  (/)  =  (
(/) sadd  { n  e.  NN0  |  ( k  e.  A  /\  ( n  -  k
)  e.  B ) } ) )
3423, 33eqeq12d 2637 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `  (
k  +  1 ) )  =  (/)  <->  ( (  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `  k
) sadd  { n  e.  NN0  |  ( k  e.  A  /\  ( n  -  k
)  e.  B ) } )  =  (
(/) sadd  { n  e.  NN0  |  ( k  e.  A  /\  ( n  -  k
)  e.  B ) } ) ) )
3519, 34syl5ibr 236 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `  k
)  =  (/)  ->  (  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `  (
k  +  1 ) )  =  (/) ) )
3635expcom 451 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( ph  ->  ( (  seq 0
( ( p  e. 
~P NN0 ,  m  e. 
NN0  |->  ( p sadd  {
n  e.  NN0  | 
( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `  k
)  =  (/)  ->  (  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `  (
k  +  1 ) )  =  (/) ) ) )
3736a2d 29 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( (
ph  ->  (  seq 0
( ( p  e. 
~P NN0 ,  m  e. 
NN0  |->  ( p sadd  {
n  e.  NN0  | 
( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `  k
)  =  (/) )  -> 
( ph  ->  (  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `  (
k  +  1 ) )  =  (/) ) ) )
3810, 13, 16, 16, 18, 37nn0ind 11472 . . . . . . . . . 10  |-  ( ( k  +  1 )  e.  NN0  ->  ( ph  ->  (  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e. 
NN0  |  ( m  e.  A  /\  (
n  -  m )  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) ) `  ( k  +  1 ) )  =  (/) ) )
397, 38syl 17 . . . . . . . . 9  |-  ( k  e.  NN0  ->  ( ph  ->  (  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e. 
NN0  |  ( m  e.  A  /\  (
n  -  m )  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) ) `  ( k  +  1 ) )  =  (/) ) )
4039impcom 446 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  (  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `  (
k  +  1 ) )  =  (/) )
4140eleq2d 2687 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( k  e.  (  seq 0
( ( p  e. 
~P NN0 ,  m  e. 
NN0  |->  ( p sadd  {
n  e.  NN0  | 
( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `  (
k  +  1 ) )  <->  k  e.  (/) ) )
426, 41mtbiri 317 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  -.  k  e.  (  seq 0
( ( p  e. 
~P NN0 ,  m  e. 
NN0  |->  ( p sadd  {
n  e.  NN0  | 
( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `  (
k  +  1 ) ) )
4320, 21, 17, 22smuval 15203 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( k  e.  ( A smul  B )  <-> 
k  e.  (  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `  (
k  +  1 ) ) ) )
4442, 43mtbird 315 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  -.  k  e.  ( A smul  B ) )
4544ex 450 . . . 4  |-  ( ph  ->  ( k  e.  NN0  ->  -.  k  e.  ( A smul  B ) ) )
465, 45syld 47 . . 3  |-  ( ph  ->  ( k  e.  ( A smul  B )  ->  -.  k  e.  ( A smul  B ) ) )
4746pm2.01d 181 . 2  |-  ( ph  ->  -.  k  e.  ( A smul  B ) )
4847eq0rdv 3979 1  |-  ( ph  ->  ( A smul  B )  =  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916    C_ wss 3574   (/)c0 3915   ifcif 4086   ~Pcpw 4158    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   0cc0 9936   1c1 9937    + caddc 9939    - cmin 10266   NN0cn0 11292    seqcseq 12801   sadd csad 15142   smul csmu 15143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-xor 1465  df-tru 1486  df-had 1533  df-cad 1546  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-sad 15173  df-smu 15198
This theorem is referenced by:  smu01  15208  smu02  15209
  Copyright terms: Public domain W3C validator