Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sseqval Structured version   Visualization version   Unicode version

Theorem sseqval 30450
Description: Value of the strong sequence builder function. The set 
W represents here the words of length greater than or equal to the lenght of the initial sequence  M. (Contributed by Thierry Arnoux, 21-Apr-2019.)
Hypotheses
Ref Expression
sseqval.1  |-  ( ph  ->  S  e.  _V )
sseqval.2  |-  ( ph  ->  M  e. Word  S )
sseqval.3  |-  W  =  (Word  S  i^i  ( `' # " ( ZZ>= `  ( # `  M ) ) ) )
sseqval.4  |-  ( ph  ->  F : W --> S )
Assertion
Ref Expression
sseqval  |-  ( ph  ->  ( Mseqstr F )  =  ( M  u.  ( lastS  o.  seq ( # `  M
) ( ( x  e.  _V ,  y  e.  _V  |->  ( x ++ 
<" ( F `  x ) "> ) ) ,  ( NN0  X.  { ( M ++  <" ( F `
 M ) "> ) } ) ) ) ) )
Distinct variable groups:    x, y, F    x, M, y    ph, x, y
Allowed substitution hints:    S( x, y)    W( x, y)

Proof of Theorem sseqval
Dummy variables  f  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sseq 30446 . . 3  |- seqstr  =  ( m  e.  _V ,  f  e.  _V  |->  ( m  u.  ( lastS  o.  seq ( # `  m ) ( ( x  e. 
_V ,  y  e. 
_V  |->  ( x ++  <" ( f `  x
) "> )
) ,  ( NN0 
X.  { ( m ++ 
<" ( f `  m ) "> ) } ) ) ) ) )
21a1i 11 . 2  |-  ( ph  -> seqstr  =  ( m  e.  _V ,  f  e.  _V  |->  ( m  u.  ( lastS  o. 
seq ( # `  m
) ( ( x  e.  _V ,  y  e.  _V  |->  ( x ++ 
<" ( f `  x ) "> ) ) ,  ( NN0  X.  { ( m ++  <" ( f `
 m ) "> ) } ) ) ) ) ) )
3 simprl 794 . . 3  |-  ( (
ph  /\  ( m  =  M  /\  f  =  F ) )  ->  m  =  M )
43fveq2d 6195 . . . . 5  |-  ( (
ph  /\  ( m  =  M  /\  f  =  F ) )  -> 
( # `  m )  =  ( # `  M
) )
5 simp1rr 1127 . . . . . . . . 9  |-  ( ( ( ph  /\  (
m  =  M  /\  f  =  F )
)  /\  x  e.  _V  /\  y  e.  _V )  ->  f  =  F )
65fveq1d 6193 . . . . . . . 8  |-  ( ( ( ph  /\  (
m  =  M  /\  f  =  F )
)  /\  x  e.  _V  /\  y  e.  _V )  ->  ( f `  x )  =  ( F `  x ) )
76s1eqd 13381 . . . . . . 7  |-  ( ( ( ph  /\  (
m  =  M  /\  f  =  F )
)  /\  x  e.  _V  /\  y  e.  _V )  ->  <" ( f `
 x ) ">  =  <" ( F `  x ) "> )
87oveq2d 6666 . . . . . 6  |-  ( ( ( ph  /\  (
m  =  M  /\  f  =  F )
)  /\  x  e.  _V  /\  y  e.  _V )  ->  ( x ++  <" ( f `  x
) "> )  =  ( x ++  <" ( F `  x
) "> )
)
98mpt2eq3dva 6719 . . . . 5  |-  ( (
ph  /\  ( m  =  M  /\  f  =  F ) )  -> 
( x  e.  _V ,  y  e.  _V  |->  ( x ++  <" (
f `  x ) "> ) )  =  ( x  e.  _V ,  y  e.  _V  |->  ( x ++  <" ( F `  x ) "> ) ) )
10 simprr 796 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  =  M  /\  f  =  F ) )  -> 
f  =  F )
1110, 3fveq12d 6197 . . . . . . . . 9  |-  ( (
ph  /\  ( m  =  M  /\  f  =  F ) )  -> 
( f `  m
)  =  ( F `
 M ) )
1211s1eqd 13381 . . . . . . . 8  |-  ( (
ph  /\  ( m  =  M  /\  f  =  F ) )  ->  <" ( f `  m ) ">  =  <" ( F `
 M ) "> )
133, 12oveq12d 6668 . . . . . . 7  |-  ( (
ph  /\  ( m  =  M  /\  f  =  F ) )  -> 
( m ++  <" (
f `  m ) "> )  =  ( M ++  <" ( F `
 M ) "> ) )
1413sneqd 4189 . . . . . 6  |-  ( (
ph  /\  ( m  =  M  /\  f  =  F ) )  ->  { ( m ++  <" ( f `  m
) "> ) }  =  { ( M ++  <" ( F `
 M ) "> ) } )
1514xpeq2d 5139 . . . . 5  |-  ( (
ph  /\  ( m  =  M  /\  f  =  F ) )  -> 
( NN0  X.  { ( m ++  <" ( f `
 m ) "> ) } )  =  ( NN0  X.  { ( M ++  <" ( F `  M
) "> ) } ) )
164, 9, 15seqeq123d 12810 . . . 4  |-  ( (
ph  /\  ( m  =  M  /\  f  =  F ) )  ->  seq ( # `  m
) ( ( x  e.  _V ,  y  e.  _V  |->  ( x ++ 
<" ( f `  x ) "> ) ) ,  ( NN0  X.  { ( m ++  <" ( f `
 m ) "> ) } ) )  =  seq ( # `
 M ) ( ( x  e.  _V ,  y  e.  _V  |->  ( x ++  <" ( F `  x ) "> ) ) ,  ( NN0  X.  {
( M ++  <" ( F `  M ) "> ) } ) ) )
1716coeq2d 5284 . . 3  |-  ( (
ph  /\  ( m  =  M  /\  f  =  F ) )  -> 
( lastS  o.  seq ( # `
 m ) ( ( x  e.  _V ,  y  e.  _V  |->  ( x ++  <" (
f `  x ) "> ) ) ,  ( NN0  X.  {
( m ++  <" (
f `  m ) "> ) } ) ) )  =  ( lastS 
o.  seq ( # `  M
) ( ( x  e.  _V ,  y  e.  _V  |->  ( x ++ 
<" ( F `  x ) "> ) ) ,  ( NN0  X.  { ( M ++  <" ( F `
 M ) "> ) } ) ) ) )
183, 17uneq12d 3768 . 2  |-  ( (
ph  /\  ( m  =  M  /\  f  =  F ) )  -> 
( m  u.  ( lastS  o. 
seq ( # `  m
) ( ( x  e.  _V ,  y  e.  _V  |->  ( x ++ 
<" ( f `  x ) "> ) ) ,  ( NN0  X.  { ( m ++  <" ( f `
 m ) "> ) } ) ) ) )  =  ( M  u.  ( lastS  o. 
seq ( # `  M
) ( ( x  e.  _V ,  y  e.  _V  |->  ( x ++ 
<" ( F `  x ) "> ) ) ,  ( NN0  X.  { ( M ++  <" ( F `
 M ) "> ) } ) ) ) ) )
19 sseqval.2 . . 3  |-  ( ph  ->  M  e. Word  S )
20 elex 3212 . . 3  |-  ( M  e. Word  S  ->  M  e.  _V )
2119, 20syl 17 . 2  |-  ( ph  ->  M  e.  _V )
22 sseqval.4 . . 3  |-  ( ph  ->  F : W --> S )
23 sseqval.3 . . . 4  |-  W  =  (Word  S  i^i  ( `' # " ( ZZ>= `  ( # `  M ) ) ) )
24 sseqval.1 . . . . 5  |-  ( ph  ->  S  e.  _V )
25 wrdexg 13315 . . . . 5  |-  ( S  e.  _V  -> Word  S  e. 
_V )
26 inex1g 4801 . . . . 5  |-  (Word  S  e.  _V  ->  (Word  S  i^i  ( `' # " ( ZZ>=
`  ( # `  M
) ) ) )  e.  _V )
2724, 25, 263syl 18 . . . 4  |-  ( ph  ->  (Word  S  i^i  ( `' # " ( ZZ>= `  ( # `  M ) ) ) )  e. 
_V )
2823, 27syl5eqel 2705 . . 3  |-  ( ph  ->  W  e.  _V )
29 fex 6490 . . 3  |-  ( ( F : W --> S  /\  W  e.  _V )  ->  F  e.  _V )
3022, 28, 29syl2anc 693 . 2  |-  ( ph  ->  F  e.  _V )
31 df-lsw 13300 . . . . . 6  |- lastS  =  ( x  e.  _V  |->  ( x `  ( (
# `  x )  -  1 ) ) )
3231funmpt2 5927 . . . . 5  |-  Fun lastS
3332a1i 11 . . . 4  |-  ( ph  ->  Fun lastS  )
34 seqex 12803 . . . . 5  |-  seq ( # `
 M ) ( ( x  e.  _V ,  y  e.  _V  |->  ( x ++  <" ( F `  x ) "> ) ) ,  ( NN0  X.  {
( M ++  <" ( F `  M ) "> ) } ) )  e.  _V
3534a1i 11 . . . 4  |-  ( ph  ->  seq ( # `  M
) ( ( x  e.  _V ,  y  e.  _V  |->  ( x ++ 
<" ( F `  x ) "> ) ) ,  ( NN0  X.  { ( M ++  <" ( F `
 M ) "> ) } ) )  e.  _V )
36 cofunexg 7130 . . . 4  |-  ( ( Fun lastS  /\  seq ( # `  M ) ( ( x  e.  _V , 
y  e.  _V  |->  ( x ++  <" ( F `
 x ) "> ) ) ,  ( NN0  X.  {
( M ++  <" ( F `  M ) "> ) } ) )  e.  _V )  ->  ( lastS  o.  seq ( # `
 M ) ( ( x  e.  _V ,  y  e.  _V  |->  ( x ++  <" ( F `  x ) "> ) ) ,  ( NN0  X.  {
( M ++  <" ( F `  M ) "> ) } ) ) )  e.  _V )
3733, 35, 36syl2anc 693 . . 3  |-  ( ph  ->  ( lastS  o.  seq ( # `
 M ) ( ( x  e.  _V ,  y  e.  _V  |->  ( x ++  <" ( F `  x ) "> ) ) ,  ( NN0  X.  {
( M ++  <" ( F `  M ) "> ) } ) ) )  e.  _V )
38 unexg 6959 . . 3  |-  ( ( M  e.  _V  /\  ( lastS  o.  seq ( # `  M ) ( ( x  e.  _V , 
y  e.  _V  |->  ( x ++  <" ( F `
 x ) "> ) ) ,  ( NN0  X.  {
( M ++  <" ( F `  M ) "> ) } ) ) )  e.  _V )  ->  ( M  u.  ( lastS  o.  seq ( # `  M ) ( ( x  e.  _V , 
y  e.  _V  |->  ( x ++  <" ( F `
 x ) "> ) ) ,  ( NN0  X.  {
( M ++  <" ( F `  M ) "> ) } ) ) ) )  e. 
_V )
3921, 37, 38syl2anc 693 . 2  |-  ( ph  ->  ( M  u.  ( lastS  o. 
seq ( # `  M
) ( ( x  e.  _V ,  y  e.  _V  |->  ( x ++ 
<" ( F `  x ) "> ) ) ,  ( NN0  X.  { ( M ++  <" ( F `
 M ) "> ) } ) ) ) )  e. 
_V )
402, 18, 21, 30, 39ovmpt2d 6788 1  |-  ( ph  ->  ( Mseqstr F )  =  ( M  u.  ( lastS  o.  seq ( # `  M
) ( ( x  e.  _V ,  y  e.  _V  |->  ( x ++ 
<" ( F `  x ) "> ) ) ,  ( NN0  X.  { ( M ++  <" ( F `
 M ) "> ) } ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200    u. cun 3572    i^i cin 3573   {csn 4177    X. cxp 5112   `'ccnv 5113   "cima 5117    o. ccom 5118   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1c1 9937    - cmin 10266   NN0cn0 11292   ZZ>=cuz 11687    seqcseq 12801   #chash 13117  Word cword 13291   lastS clsw 13292   ++ cconcat 13293   <"cs1 13294  seqstrcsseq 30445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-map 7859  df-pm 7860  df-neg 10269  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-word 13299  df-lsw 13300  df-s1 13302  df-sseq 30446
This theorem is referenced by:  sseqfv1  30451  sseqfn  30452  sseqf  30454  sseqfv2  30456
  Copyright terms: Public domain W3C validator