| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sseqval | Structured version Visualization version Unicode version | ||
| Description: Value of the strong
sequence builder function. The set |
| Ref | Expression |
|---|---|
| sseqval.1 |
|
| sseqval.2 |
|
| sseqval.3 |
|
| sseqval.4 |
|
| Ref | Expression |
|---|---|
| sseqval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sseq 30446 |
. . 3
| |
| 2 | 1 | a1i 11 |
. 2
|
| 3 | simprl 794 |
. . 3
| |
| 4 | 3 | fveq2d 6195 |
. . . . 5
|
| 5 | simp1rr 1127 |
. . . . . . . . 9
| |
| 6 | 5 | fveq1d 6193 |
. . . . . . . 8
|
| 7 | 6 | s1eqd 13381 |
. . . . . . 7
|
| 8 | 7 | oveq2d 6666 |
. . . . . 6
|
| 9 | 8 | mpt2eq3dva 6719 |
. . . . 5
|
| 10 | simprr 796 |
. . . . . . . . . 10
| |
| 11 | 10, 3 | fveq12d 6197 |
. . . . . . . . 9
|
| 12 | 11 | s1eqd 13381 |
. . . . . . . 8
|
| 13 | 3, 12 | oveq12d 6668 |
. . . . . . 7
|
| 14 | 13 | sneqd 4189 |
. . . . . 6
|
| 15 | 14 | xpeq2d 5139 |
. . . . 5
|
| 16 | 4, 9, 15 | seqeq123d 12810 |
. . . 4
|
| 17 | 16 | coeq2d 5284 |
. . 3
|
| 18 | 3, 17 | uneq12d 3768 |
. 2
|
| 19 | sseqval.2 |
. . 3
| |
| 20 | elex 3212 |
. . 3
| |
| 21 | 19, 20 | syl 17 |
. 2
|
| 22 | sseqval.4 |
. . 3
| |
| 23 | sseqval.3 |
. . . 4
| |
| 24 | sseqval.1 |
. . . . 5
| |
| 25 | wrdexg 13315 |
. . . . 5
| |
| 26 | inex1g 4801 |
. . . . 5
| |
| 27 | 24, 25, 26 | 3syl 18 |
. . . 4
|
| 28 | 23, 27 | syl5eqel 2705 |
. . 3
|
| 29 | fex 6490 |
. . 3
| |
| 30 | 22, 28, 29 | syl2anc 693 |
. 2
|
| 31 | df-lsw 13300 |
. . . . . 6
| |
| 32 | 31 | funmpt2 5927 |
. . . . 5
|
| 33 | 32 | a1i 11 |
. . . 4
|
| 34 | seqex 12803 |
. . . . 5
| |
| 35 | 34 | a1i 11 |
. . . 4
|
| 36 | cofunexg 7130 |
. . . 4
| |
| 37 | 33, 35, 36 | syl2anc 693 |
. . 3
|
| 38 | unexg 6959 |
. . 3
| |
| 39 | 21, 37, 38 | syl2anc 693 |
. 2
|
| 40 | 2, 18, 21, 30, 39 | ovmpt2d 6788 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-map 7859 df-pm 7860 df-neg 10269 df-z 11378 df-uz 11688 df-fz 12327 df-fzo 12466 df-seq 12802 df-word 13299 df-lsw 13300 df-s1 13302 df-sseq 30446 |
| This theorem is referenced by: sseqfv1 30451 sseqfn 30452 sseqf 30454 sseqfv2 30456 |
| Copyright terms: Public domain | W3C validator |