Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sseqfv2 Structured version   Visualization version   Unicode version

Theorem sseqfv2 30456
Description: Value of the strong sequence builder function. (Contributed by Thierry Arnoux, 21-Apr-2019.)
Hypotheses
Ref Expression
sseqval.1  |-  ( ph  ->  S  e.  _V )
sseqval.2  |-  ( ph  ->  M  e. Word  S )
sseqval.3  |-  W  =  (Word  S  i^i  ( `' # " ( ZZ>= `  ( # `  M ) ) ) )
sseqval.4  |-  ( ph  ->  F : W --> S )
sseqfv2.4  |-  ( ph  ->  N  e.  ( ZZ>= `  ( # `  M ) ) )
Assertion
Ref Expression
sseqfv2  |-  ( ph  ->  ( ( Mseqstr F ) `
 N )  =  ( lastS  `  (  seq ( # `  M ) ( ( x  e. 
_V ,  y  e. 
_V  |->  ( x ++  <" ( F `  x
) "> )
) ,  ( NN0 
X.  { ( M ++ 
<" ( F `  M ) "> ) } ) ) `  N ) ) )
Distinct variable groups:    x, y, F    x, M, y    ph, x, y    x, W, y
Allowed substitution hints:    S( x, y)    N( x, y)

Proof of Theorem sseqfv2
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseqval.1 . . . 4  |-  ( ph  ->  S  e.  _V )
2 sseqval.2 . . . 4  |-  ( ph  ->  M  e. Word  S )
3 sseqval.3 . . . 4  |-  W  =  (Word  S  i^i  ( `' # " ( ZZ>= `  ( # `  M ) ) ) )
4 sseqval.4 . . . 4  |-  ( ph  ->  F : W --> S )
51, 2, 3, 4sseqval 30450 . . 3  |-  ( ph  ->  ( Mseqstr F )  =  ( M  u.  ( lastS  o.  seq ( # `  M
) ( ( x  e.  _V ,  y  e.  _V  |->  ( x ++ 
<" ( F `  x ) "> ) ) ,  ( NN0  X.  { ( M ++  <" ( F `
 M ) "> ) } ) ) ) ) )
65fveq1d 6193 . 2  |-  ( ph  ->  ( ( Mseqstr F ) `
 N )  =  ( ( M  u.  ( lastS  o.  seq ( # `  M ) ( ( x  e.  _V , 
y  e.  _V  |->  ( x ++  <" ( F `
 x ) "> ) ) ,  ( NN0  X.  {
( M ++  <" ( F `  M ) "> ) } ) ) ) ) `  N ) )
7 wrdfn 13319 . . . 4  |-  ( M  e. Word  S  ->  M  Fn  ( 0..^ ( # `  M ) ) )
82, 7syl 17 . . 3  |-  ( ph  ->  M  Fn  ( 0..^ ( # `  M
) ) )
9 fvex 6201 . . . . . 6  |-  ( x `
 ( ( # `  x )  -  1 ) )  e.  _V
10 df-lsw 13300 . . . . . 6  |- lastS  =  ( x  e.  _V  |->  ( x `  ( (
# `  x )  -  1 ) ) )
119, 10fnmpti 6022 . . . . 5  |- lastS  Fn  _V
1211a1i 11 . . . 4  |-  ( ph  -> lastS 
Fn  _V )
13 lencl 13324 . . . . . . 7  |-  ( M  e. Word  S  ->  ( # `
 M )  e. 
NN0 )
142, 13syl 17 . . . . . 6  |-  ( ph  ->  ( # `  M
)  e.  NN0 )
1514nn0zd 11480 . . . . 5  |-  ( ph  ->  ( # `  M
)  e.  ZZ )
16 seqfn 12813 . . . . 5  |-  ( (
# `  M )  e.  ZZ  ->  seq ( # `
 M ) ( ( x  e.  _V ,  y  e.  _V  |->  ( x ++  <" ( F `  x ) "> ) ) ,  ( NN0  X.  {
( M ++  <" ( F `  M ) "> ) } ) )  Fn  ( ZZ>= `  ( # `  M ) ) )
1715, 16syl 17 . . . 4  |-  ( ph  ->  seq ( # `  M
) ( ( x  e.  _V ,  y  e.  _V  |->  ( x ++ 
<" ( F `  x ) "> ) ) ,  ( NN0  X.  { ( M ++  <" ( F `
 M ) "> ) } ) )  Fn  ( ZZ>= `  ( # `  M ) ) )
18 ssv 3625 . . . . 5  |-  ran  seq ( # `  M ) ( ( x  e. 
_V ,  y  e. 
_V  |->  ( x ++  <" ( F `  x
) "> )
) ,  ( NN0 
X.  { ( M ++ 
<" ( F `  M ) "> ) } ) )  C_  _V
1918a1i 11 . . . 4  |-  ( ph  ->  ran  seq ( # `  M ) ( ( x  e.  _V , 
y  e.  _V  |->  ( x ++  <" ( F `
 x ) "> ) ) ,  ( NN0  X.  {
( M ++  <" ( F `  M ) "> ) } ) )  C_  _V )
20 fnco 5999 . . . 4  |-  ( ( lastS 
Fn  _V  /\  seq ( # `
 M ) ( ( x  e.  _V ,  y  e.  _V  |->  ( x ++  <" ( F `  x ) "> ) ) ,  ( NN0  X.  {
( M ++  <" ( F `  M ) "> ) } ) )  Fn  ( ZZ>= `  ( # `  M ) )  /\  ran  seq ( # `  M ) ( ( x  e. 
_V ,  y  e. 
_V  |->  ( x ++  <" ( F `  x
) "> )
) ,  ( NN0 
X.  { ( M ++ 
<" ( F `  M ) "> ) } ) )  C_  _V )  ->  ( lastS  o.  seq ( # `  M
) ( ( x  e.  _V ,  y  e.  _V  |->  ( x ++ 
<" ( F `  x ) "> ) ) ,  ( NN0  X.  { ( M ++  <" ( F `
 M ) "> ) } ) ) )  Fn  ( ZZ>=
`  ( # `  M
) ) )
2112, 17, 19, 20syl3anc 1326 . . 3  |-  ( ph  ->  ( lastS  o.  seq ( # `
 M ) ( ( x  e.  _V ,  y  e.  _V  |->  ( x ++  <" ( F `  x ) "> ) ) ,  ( NN0  X.  {
( M ++  <" ( F `  M ) "> ) } ) ) )  Fn  ( ZZ>=
`  ( # `  M
) ) )
22 fzouzdisj 12504 . . . 4  |-  ( ( 0..^ ( # `  M
) )  i^i  ( ZZ>=
`  ( # `  M
) ) )  =  (/)
2322a1i 11 . . 3  |-  ( ph  ->  ( ( 0..^ (
# `  M )
)  i^i  ( ZZ>= `  ( # `  M ) ) )  =  (/) )
24 sseqfv2.4 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  ( # `  M ) ) )
25 fvun2 6270 . . 3  |-  ( ( M  Fn  ( 0..^ ( # `  M
) )  /\  ( lastS  o. 
seq ( # `  M
) ( ( x  e.  _V ,  y  e.  _V  |->  ( x ++ 
<" ( F `  x ) "> ) ) ,  ( NN0  X.  { ( M ++  <" ( F `
 M ) "> ) } ) ) )  Fn  ( ZZ>=
`  ( # `  M
) )  /\  (
( ( 0..^ (
# `  M )
)  i^i  ( ZZ>= `  ( # `  M ) ) )  =  (/)  /\  N  e.  ( ZZ>= `  ( # `  M ) ) ) )  -> 
( ( M  u.  ( lastS  o.  seq ( # `  M ) ( ( x  e.  _V , 
y  e.  _V  |->  ( x ++  <" ( F `
 x ) "> ) ) ,  ( NN0  X.  {
( M ++  <" ( F `  M ) "> ) } ) ) ) ) `  N )  =  ( ( lastS  o.  seq ( # `
 M ) ( ( x  e.  _V ,  y  e.  _V  |->  ( x ++  <" ( F `  x ) "> ) ) ,  ( NN0  X.  {
( M ++  <" ( F `  M ) "> ) } ) ) ) `  N
) )
268, 21, 23, 24, 25syl112anc 1330 . 2  |-  ( ph  ->  ( ( M  u.  ( lastS  o.  seq ( # `  M ) ( ( x  e.  _V , 
y  e.  _V  |->  ( x ++  <" ( F `
 x ) "> ) ) ,  ( NN0  X.  {
( M ++  <" ( F `  M ) "> ) } ) ) ) ) `  N )  =  ( ( lastS  o.  seq ( # `
 M ) ( ( x  e.  _V ,  y  e.  _V  |->  ( x ++  <" ( F `  x ) "> ) ) ,  ( NN0  X.  {
( M ++  <" ( F `  M ) "> ) } ) ) ) `  N
) )
27 fnfun 5988 . . . 4  |-  (  seq ( # `  M
) ( ( x  e.  _V ,  y  e.  _V  |->  ( x ++ 
<" ( F `  x ) "> ) ) ,  ( NN0  X.  { ( M ++  <" ( F `
 M ) "> ) } ) )  Fn  ( ZZ>= `  ( # `  M ) )  ->  Fun  seq ( # `
 M ) ( ( x  e.  _V ,  y  e.  _V  |->  ( x ++  <" ( F `  x ) "> ) ) ,  ( NN0  X.  {
( M ++  <" ( F `  M ) "> ) } ) ) )
2817, 27syl 17 . . 3  |-  ( ph  ->  Fun  seq ( # `  M ) ( ( x  e.  _V , 
y  e.  _V  |->  ( x ++  <" ( F `
 x ) "> ) ) ,  ( NN0  X.  {
( M ++  <" ( F `  M ) "> ) } ) ) )
29 fvexd 6203 . . . . . 6  |-  ( ph  ->  ( ( NN0  X.  { ( M ++  <" ( F `  M
) "> ) } ) `  ( # `
 M ) )  e.  _V )
30 ovexd 6680 . . . . . 6  |-  ( (
ph  /\  ( a  e.  _V  /\  b  e. 
_V ) )  -> 
( a ( x  e.  _V ,  y  e.  _V  |->  ( x ++ 
<" ( F `  x ) "> ) ) b )  e.  _V )
31 eqid 2622 . . . . . 6  |-  ( ZZ>= `  ( # `  M ) )  =  ( ZZ>= `  ( # `  M ) )
32 fvexd 6203 . . . . . 6  |-  ( (
ph  /\  a  e.  ( ZZ>= `  ( ( # `
 M )  +  1 ) ) )  ->  ( ( NN0 
X.  { ( M ++ 
<" ( F `  M ) "> ) } ) `  a
)  e.  _V )
3329, 30, 31, 15, 32seqf2 12820 . . . . 5  |-  ( ph  ->  seq ( # `  M
) ( ( x  e.  _V ,  y  e.  _V  |->  ( x ++ 
<" ( F `  x ) "> ) ) ,  ( NN0  X.  { ( M ++  <" ( F `
 M ) "> ) } ) ) : ( ZZ>= `  ( # `  M ) ) --> _V )
34 fdm 6051 . . . . 5  |-  (  seq ( # `  M
) ( ( x  e.  _V ,  y  e.  _V  |->  ( x ++ 
<" ( F `  x ) "> ) ) ,  ( NN0  X.  { ( M ++  <" ( F `
 M ) "> ) } ) ) : ( ZZ>= `  ( # `  M ) ) --> _V  ->  dom  seq ( # `  M ) ( ( x  e. 
_V ,  y  e. 
_V  |->  ( x ++  <" ( F `  x
) "> )
) ,  ( NN0 
X.  { ( M ++ 
<" ( F `  M ) "> ) } ) )  =  ( ZZ>= `  ( # `  M
) ) )
3533, 34syl 17 . . . 4  |-  ( ph  ->  dom  seq ( # `  M ) ( ( x  e.  _V , 
y  e.  _V  |->  ( x ++  <" ( F `
 x ) "> ) ) ,  ( NN0  X.  {
( M ++  <" ( F `  M ) "> ) } ) )  =  ( ZZ>= `  ( # `  M ) ) )
3624, 35eleqtrrd 2704 . . 3  |-  ( ph  ->  N  e.  dom  seq ( # `  M ) ( ( x  e. 
_V ,  y  e. 
_V  |->  ( x ++  <" ( F `  x
) "> )
) ,  ( NN0 
X.  { ( M ++ 
<" ( F `  M ) "> ) } ) ) )
37 fvco 6274 . . 3  |-  ( ( Fun  seq ( # `  M ) ( ( x  e.  _V , 
y  e.  _V  |->  ( x ++  <" ( F `
 x ) "> ) ) ,  ( NN0  X.  {
( M ++  <" ( F `  M ) "> ) } ) )  /\  N  e. 
dom  seq ( # `  M
) ( ( x  e.  _V ,  y  e.  _V  |->  ( x ++ 
<" ( F `  x ) "> ) ) ,  ( NN0  X.  { ( M ++  <" ( F `
 M ) "> ) } ) ) )  ->  (
( lastS  o.  seq ( # `
 M ) ( ( x  e.  _V ,  y  e.  _V  |->  ( x ++  <" ( F `  x ) "> ) ) ,  ( NN0  X.  {
( M ++  <" ( F `  M ) "> ) } ) ) ) `  N
)  =  ( lastS  `  (  seq ( # `  M
) ( ( x  e.  _V ,  y  e.  _V  |->  ( x ++ 
<" ( F `  x ) "> ) ) ,  ( NN0  X.  { ( M ++  <" ( F `
 M ) "> ) } ) ) `  N ) ) )
3828, 36, 37syl2anc 693 . 2  |-  ( ph  ->  ( ( lastS  o.  seq ( # `  M ) ( ( x  e. 
_V ,  y  e. 
_V  |->  ( x ++  <" ( F `  x
) "> )
) ,  ( NN0 
X.  { ( M ++ 
<" ( F `  M ) "> ) } ) ) ) `
 N )  =  ( lastS  `  (  seq ( # `  M ) ( ( x  e. 
_V ,  y  e. 
_V  |->  ( x ++  <" ( F `  x
) "> )
) ,  ( NN0 
X.  { ( M ++ 
<" ( F `  M ) "> ) } ) ) `  N ) ) )
396, 26, 383eqtrd 2660 1  |-  ( ph  ->  ( ( Mseqstr F ) `
 N )  =  ( lastS  `  (  seq ( # `  M ) ( ( x  e. 
_V ,  y  e. 
_V  |->  ( x ++  <" ( F `  x
) "> )
) ,  ( NN0 
X.  { ( M ++ 
<" ( F `  M ) "> ) } ) ) `  N ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177    X. cxp 5112   `'ccnv 5113   dom cdm 5114   ran crn 5115   "cima 5117    o. ccom 5118   Fun wfun 5882    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   0cc0 9936   1c1 9937    + caddc 9939    - cmin 10266   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687  ..^cfzo 12465    seqcseq 12801   #chash 13117  Word cword 13291   lastS clsw 13292   ++ cconcat 13293   <"cs1 13294  seqstrcsseq 30445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-word 13299  df-lsw 13300  df-s1 13302  df-sseq 30446
This theorem is referenced by:  sseqp1  30457
  Copyright terms: Public domain W3C validator