MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  stdbdmopn Structured version   Visualization version   Unicode version

Theorem stdbdmopn 22323
Description: The standard bounded metric corresponding to  C generates the same topology as  C. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypotheses
Ref Expression
stdbdmet.1  |-  D  =  ( x  e.  X ,  y  e.  X  |->  if ( ( x C y )  <_  R ,  ( x C y ) ,  R ) )
stdbdmopn.2  |-  J  =  ( MetOpen `  C )
Assertion
Ref Expression
stdbdmopn  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  J  =  (
MetOpen `  D ) )
Distinct variable groups:    x, y, C    x, R, y    x, X, y
Allowed substitution hints:    D( x, y)    J( x, y)

Proof of Theorem stdbdmopn
Dummy variables  r 
s  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpxr 11840 . . . . . . . 8  |-  ( r  e.  RR+  ->  r  e. 
RR* )
21ad2antll 765 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
r  e.  RR* )
3 simpl2 1065 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  ->  R  e.  RR* )
42, 3ifcld 4131 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  ->  if ( r  <_  R ,  r ,  R
)  e.  RR* )
5 rpre 11839 . . . . . . 7  |-  ( r  e.  RR+  ->  r  e.  RR )
65ad2antll 765 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
r  e.  RR )
7 rpgt0 11844 . . . . . . . . 9  |-  ( r  e.  RR+  ->  0  < 
r )
87ad2antll 765 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
0  <  r )
9 simpl3 1066 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
0  <  R )
10 breq2 4657 . . . . . . . . 9  |-  ( r  =  if ( r  <_  R ,  r ,  R )  -> 
( 0  <  r  <->  0  <  if ( r  <_  R ,  r ,  R ) ) )
11 breq2 4657 . . . . . . . . 9  |-  ( R  =  if ( r  <_  R ,  r ,  R )  -> 
( 0  <  R  <->  0  <  if ( r  <_  R ,  r ,  R ) ) )
1210, 11ifboth 4124 . . . . . . . 8  |-  ( ( 0  <  r  /\  0  <  R )  -> 
0  <  if (
r  <_  R , 
r ,  R ) )
138, 9, 12syl2anc 693 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
0  <  if (
r  <_  R , 
r ,  R ) )
14 0xr 10086 . . . . . . . 8  |-  0  e.  RR*
15 xrltle 11982 . . . . . . . 8  |-  ( ( 0  e.  RR*  /\  if ( r  <_  R ,  r ,  R
)  e.  RR* )  ->  ( 0  <  if ( r  <_  R ,  r ,  R
)  ->  0  <_  if ( r  <_  R ,  r ,  R
) ) )
1614, 4, 15sylancr 695 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
( 0  <  if ( r  <_  R ,  r ,  R
)  ->  0  <_  if ( r  <_  R ,  r ,  R
) ) )
1713, 16mpd 15 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
0  <_  if (
r  <_  R , 
r ,  R ) )
18 xrmin1 12008 . . . . . . 7  |-  ( ( r  e.  RR*  /\  R  e.  RR* )  ->  if ( r  <_  R ,  r ,  R
)  <_  r )
192, 3, 18syl2anc 693 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  ->  if ( r  <_  R ,  r ,  R
)  <_  r )
20 xrrege0 12005 . . . . . 6  |-  ( ( ( if ( r  <_  R ,  r ,  R )  e. 
RR*  /\  r  e.  RR )  /\  (
0  <_  if (
r  <_  R , 
r ,  R )  /\  if ( r  <_  R ,  r ,  R )  <_ 
r ) )  ->  if ( r  <_  R ,  r ,  R
)  e.  RR )
214, 6, 17, 19, 20syl22anc 1327 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  ->  if ( r  <_  R ,  r ,  R
)  e.  RR )
2221, 13elrpd 11869 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  ->  if ( r  <_  R ,  r ,  R
)  e.  RR+ )
23 simprl 794 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
z  e.  X )
24 xrmin2 12009 . . . . . . . 8  |-  ( ( r  e.  RR*  /\  R  e.  RR* )  ->  if ( r  <_  R ,  r ,  R
)  <_  R )
252, 3, 24syl2anc 693 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  ->  if ( r  <_  R ,  r ,  R
)  <_  R )
2623, 4, 253jca 1242 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
( z  e.  X  /\  if ( r  <_  R ,  r ,  R )  e.  RR*  /\  if ( r  <_  R ,  r ,  R )  <_  R
) )
27 stdbdmet.1 . . . . . . 7  |-  D  =  ( x  e.  X ,  y  e.  X  |->  if ( ( x C y )  <_  R ,  ( x C y ) ,  R ) )
2827stdbdbl 22322 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  if ( r  <_  R , 
r ,  R )  e.  RR*  /\  if ( r  <_  R , 
r ,  R )  <_  R ) )  ->  ( z (
ball `  D ) if ( r  <_  R ,  r ,  R
) )  =  ( z ( ball `  C
) if ( r  <_  R ,  r ,  R ) ) )
2926, 28syldan 487 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
( z ( ball `  D ) if ( r  <_  R , 
r ,  R ) )  =  ( z ( ball `  C
) if ( r  <_  R ,  r ,  R ) ) )
3029eqcomd 2628 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
( z ( ball `  C ) if ( r  <_  R , 
r ,  R ) )  =  ( z ( ball `  D
) if ( r  <_  R ,  r ,  R ) ) )
31 breq1 4656 . . . . . 6  |-  ( s  =  if ( r  <_  R ,  r ,  R )  -> 
( s  <_  r  <->  if ( r  <_  R ,  r ,  R
)  <_  r )
)
32 oveq2 6658 . . . . . . 7  |-  ( s  =  if ( r  <_  R ,  r ,  R )  -> 
( z ( ball `  C ) s )  =  ( z (
ball `  C ) if ( r  <_  R ,  r ,  R
) ) )
33 oveq2 6658 . . . . . . 7  |-  ( s  =  if ( r  <_  R ,  r ,  R )  -> 
( z ( ball `  D ) s )  =  ( z (
ball `  D ) if ( r  <_  R ,  r ,  R
) ) )
3432, 33eqeq12d 2637 . . . . . 6  |-  ( s  =  if ( r  <_  R ,  r ,  R )  -> 
( ( z (
ball `  C )
s )  =  ( z ( ball `  D
) s )  <->  ( z
( ball `  C ) if ( r  <_  R ,  r ,  R
) )  =  ( z ( ball `  D
) if ( r  <_  R ,  r ,  R ) ) ) )
3531, 34anbi12d 747 . . . . 5  |-  ( s  =  if ( r  <_  R ,  r ,  R )  -> 
( ( s  <_ 
r  /\  ( z
( ball `  C )
s )  =  ( z ( ball `  D
) s ) )  <-> 
( if ( r  <_  R ,  r ,  R )  <_ 
r  /\  ( z
( ball `  C ) if ( r  <_  R ,  r ,  R
) )  =  ( z ( ball `  D
) if ( r  <_  R ,  r ,  R ) ) ) ) )
3635rspcev 3309 . . . 4  |-  ( ( if ( r  <_  R ,  r ,  R )  e.  RR+  /\  ( if ( r  <_  R ,  r ,  R )  <_ 
r  /\  ( z
( ball `  C ) if ( r  <_  R ,  r ,  R
) )  =  ( z ( ball `  D
) if ( r  <_  R ,  r ,  R ) ) ) )  ->  E. s  e.  RR+  ( s  <_ 
r  /\  ( z
( ball `  C )
s )  =  ( z ( ball `  D
) s ) ) )
3722, 19, 30, 36syl12anc 1324 . . 3  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  ->  E. s  e.  RR+  (
s  <_  r  /\  ( z ( ball `  C ) s )  =  ( z (
ball `  D )
s ) ) )
3837ralrimivva 2971 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  A. z  e.  X  A. r  e.  RR+  E. s  e.  RR+  ( s  <_ 
r  /\  ( z
( ball `  C )
s )  =  ( z ( ball `  D
) s ) ) )
39 simp1 1061 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  C  e.  ( *Met `  X
) )
4027stdbdxmet 22320 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  D  e.  ( *Met `  X
) )
41 stdbdmopn.2 . . . 4  |-  J  =  ( MetOpen `  C )
42 eqid 2622 . . . 4  |-  ( MetOpen `  D )  =  (
MetOpen `  D )
4341, 42metequiv2 22315 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  ( A. z  e.  X  A. r  e.  RR+  E. s  e.  RR+  ( s  <_ 
r  /\  ( z
( ball `  C )
s )  =  ( z ( ball `  D
) s ) )  ->  J  =  (
MetOpen `  D ) ) )
4439, 40, 43syl2anc 693 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  ( A. z  e.  X  A. r  e.  RR+  E. s  e.  RR+  ( s  <_  r  /\  ( z ( ball `  C ) s )  =  ( z (
ball `  D )
s ) )  ->  J  =  ( MetOpen `  D ) ) )
4538, 44mpd 15 1  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  J  =  (
MetOpen `  D ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   ifcif 4086   class class class wbr 4653   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   RRcr 9935   0cc0 9936   RR*cxr 10073    < clt 10074    <_ cle 10075   RR+crp 11832   *Metcxmt 19731   ballcbl 19733   MetOpencmopn 19736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-bl 19741  df-mopn 19742  df-bases 20750
This theorem is referenced by:  mopnex  22324  xlebnum  22764
  Copyright terms: Public domain W3C validator