| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subbascn | Structured version Visualization version Unicode version | ||
| Description: The continuity predicate when the range is given by a subbasis for a topology. (Contributed by Mario Carneiro, 7-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| subbascn.1 |
|
| subbascn.2 |
|
| subbascn.3 |
|
| subbascn.4 |
|
| Ref | Expression |
|---|---|
| subbascn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subbascn.1 |
. . 3
| |
| 2 | subbascn.3 |
. . 3
| |
| 3 | subbascn.4 |
. . 3
| |
| 4 | 1, 2, 3 | tgcn 21056 |
. 2
|
| 5 | subbascn.2 |
. . . . . 6
| |
| 6 | 5 | adantr 481 |
. . . . 5
|
| 7 | ssfii 8325 |
. . . . 5
| |
| 8 | ssralv 3666 |
. . . . 5
| |
| 9 | 6, 7, 8 | 3syl 18 |
. . . 4
|
| 10 | vex 3203 |
. . . . . . . . 9
| |
| 11 | elfi 8319 |
. . . . . . . . 9
| |
| 12 | 10, 6, 11 | sylancr 695 |
. . . . . . . 8
|
| 13 | simpr2 1068 |
. . . . . . . . . . . . 13
| |
| 14 | 13 | imaeq2d 5466 |
. . . . . . . . . . . 12
|
| 15 | ffun 6048 |
. . . . . . . . . . . . . 14
| |
| 16 | 15 | ad2antlr 763 |
. . . . . . . . . . . . 13
|
| 17 | 13, 10 | syl6eqelr 2710 |
. . . . . . . . . . . . . 14
|
| 18 | intex 4820 |
. . . . . . . . . . . . . 14
| |
| 19 | 17, 18 | sylibr 224 |
. . . . . . . . . . . . 13
|
| 20 | intpreima 6346 |
. . . . . . . . . . . . 13
| |
| 21 | 16, 19, 20 | syl2anc 693 |
. . . . . . . . . . . 12
|
| 22 | 14, 21 | eqtrd 2656 |
. . . . . . . . . . 11
|
| 23 | topontop 20718 |
. . . . . . . . . . . . . 14
| |
| 24 | 1, 23 | syl 17 |
. . . . . . . . . . . . 13
|
| 25 | 24 | ad2antrr 762 |
. . . . . . . . . . . 12
|
| 26 | inss2 3834 |
. . . . . . . . . . . . 13
| |
| 27 | simpr1 1067 |
. . . . . . . . . . . . 13
| |
| 28 | 26, 27 | sseldi 3601 |
. . . . . . . . . . . 12
|
| 29 | inss1 3833 |
. . . . . . . . . . . . . . 15
| |
| 30 | 29, 27 | sseldi 3601 |
. . . . . . . . . . . . . 14
|
| 31 | 30 | elpwid 4170 |
. . . . . . . . . . . . 13
|
| 32 | simpr3 1069 |
. . . . . . . . . . . . 13
| |
| 33 | ssralv 3666 |
. . . . . . . . . . . . 13
| |
| 34 | 31, 32, 33 | sylc 65 |
. . . . . . . . . . . 12
|
| 35 | iinopn 20707 |
. . . . . . . . . . . 12
| |
| 36 | 25, 28, 19, 34, 35 | syl13anc 1328 |
. . . . . . . . . . 11
|
| 37 | 22, 36 | eqeltrd 2701 |
. . . . . . . . . 10
|
| 38 | 37 | 3exp2 1285 |
. . . . . . . . 9
|
| 39 | 38 | rexlimdv 3030 |
. . . . . . . 8
|
| 40 | 12, 39 | sylbid 230 |
. . . . . . 7
|
| 41 | 40 | com23 86 |
. . . . . 6
|
| 42 | 41 | ralrimdv 2968 |
. . . . 5
|
| 43 | imaeq2 5462 |
. . . . . . 7
| |
| 44 | 43 | eleq1d 2686 |
. . . . . 6
|
| 45 | 44 | cbvralv 3171 |
. . . . 5
|
| 46 | 42, 45 | syl6ibr 242 |
. . . 4
|
| 47 | 9, 46 | impbid 202 |
. . 3
|
| 48 | 47 | pm5.32da 673 |
. 2
|
| 49 | 4, 48 | bitrd 268 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-fin 7959 df-fi 8317 df-topgen 16104 df-top 20699 df-topon 20716 df-bases 20750 df-cn 21031 |
| This theorem is referenced by: xkoccn 21422 ptrescn 21442 xkoco1cn 21460 xkoco2cn 21461 xkococn 21463 xkoinjcn 21490 ordthmeolem 21604 |
| Copyright terms: Public domain | W3C validator |