MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptrescn Structured version   Visualization version   Unicode version

Theorem ptrescn 21442
Description: Restriction is a continuous function on product topologies. (Contributed by Mario Carneiro, 7-Feb-2015.)
Hypotheses
Ref Expression
ptrescn.1  |-  X  = 
U. J
ptrescn.2  |-  J  =  ( Xt_ `  F
)
ptrescn.3  |-  K  =  ( Xt_ `  ( F  |`  B ) )
Assertion
Ref Expression
ptrescn  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  -> 
( x  e.  X  |->  ( x  |`  B ) )  e.  ( J  Cn  K ) )
Distinct variable groups:    x, A    x, B    x, F    x, K    x, V    x, X
Allowed substitution hint:    J( x)

Proof of Theorem ptrescn
Dummy variables  u  k  v  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl3 1066 . . . . 5  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  x  e.  X )  ->  B  C_  A )
2 ptrescn.2 . . . . . . . . . 10  |-  J  =  ( Xt_ `  F
)
32ptuni 21397 . . . . . . . . 9  |-  ( ( A  e.  V  /\  F : A --> Top )  -> 
X_ k  e.  A  U. ( F `  k
)  =  U. J
)
433adant3 1081 . . . . . . . 8  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  ->  X_ k  e.  A  U. ( F `  k )  =  U. J )
5 ptrescn.1 . . . . . . . 8  |-  X  = 
U. J
64, 5syl6eqr 2674 . . . . . . 7  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  ->  X_ k  e.  A  U. ( F `  k )  =  X )
76eleq2d 2687 . . . . . 6  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  -> 
( x  e.  X_ k  e.  A  U. ( F `  k )  <-> 
x  e.  X ) )
87biimpar 502 . . . . 5  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  x  e.  X )  ->  x  e.  X_ k  e.  A  U. ( F `  k )
)
9 resixp 7943 . . . . 5  |-  ( ( B  C_  A  /\  x  e.  X_ k  e.  A  U. ( F `
 k ) )  ->  ( x  |`  B )  e.  X_ k  e.  B  U. ( F `  k ) )
101, 8, 9syl2anc 693 . . . 4  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  x  e.  X )  ->  ( x  |`  B )  e.  X_ k  e.  B  U. ( F `  k
) )
11 ixpeq2 7922 . . . . . . 7  |-  ( A. k  e.  B  U. ( ( F  |`  B ) `  k
)  =  U. ( F `  k )  -> 
X_ k  e.  B  U. ( ( F  |`  B ) `  k
)  =  X_ k  e.  B  U. ( F `  k )
)
12 fvres 6207 . . . . . . . 8  |-  ( k  e.  B  ->  (
( F  |`  B ) `
 k )  =  ( F `  k
) )
1312unieqd 4446 . . . . . . 7  |-  ( k  e.  B  ->  U. (
( F  |`  B ) `
 k )  = 
U. ( F `  k ) )
1411, 13mprg 2926 . . . . . 6  |-  X_ k  e.  B  U. (
( F  |`  B ) `
 k )  = 
X_ k  e.  B  U. ( F `  k
)
15 ssexg 4804 . . . . . . . . 9  |-  ( ( B  C_  A  /\  A  e.  V )  ->  B  e.  _V )
1615ancoms 469 . . . . . . . 8  |-  ( ( A  e.  V  /\  B  C_  A )  ->  B  e.  _V )
17163adant2 1080 . . . . . . 7  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  ->  B  e.  _V )
18 fssres 6070 . . . . . . . 8  |-  ( ( F : A --> Top  /\  B  C_  A )  -> 
( F  |`  B ) : B --> Top )
19183adant1 1079 . . . . . . 7  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  -> 
( F  |`  B ) : B --> Top )
20 ptrescn.3 . . . . . . . 8  |-  K  =  ( Xt_ `  ( F  |`  B ) )
2120ptuni 21397 . . . . . . 7  |-  ( ( B  e.  _V  /\  ( F  |`  B ) : B --> Top )  -> 
X_ k  e.  B  U. ( ( F  |`  B ) `  k
)  =  U. K
)
2217, 19, 21syl2anc 693 . . . . . 6  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  ->  X_ k  e.  B  U. ( ( F  |`  B ) `  k
)  =  U. K
)
2314, 22syl5eqr 2670 . . . . 5  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  ->  X_ k  e.  B  U. ( F `  k )  =  U. K )
2423adantr 481 . . . 4  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  x  e.  X )  -> 
X_ k  e.  B  U. ( F `  k
)  =  U. K
)
2510, 24eleqtrd 2703 . . 3  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  x  e.  X )  ->  ( x  |`  B )  e.  U. K )
26 eqid 2622 . . 3  |-  ( x  e.  X  |->  ( x  |`  B ) )  =  ( x  e.  X  |->  ( x  |`  B ) )
2725, 26fmptd 6385 . 2  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  -> 
( x  e.  X  |->  ( x  |`  B ) ) : X --> U. K
)
28 fimacnv 6347 . . . . . . 7  |-  ( ( x  e.  X  |->  ( x  |`  B )
) : X --> U. K  ->  ( `' ( x  e.  X  |->  ( x  |`  B ) ) " U. K )  =  X )
2927, 28syl 17 . . . . . 6  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  -> 
( `' ( x  e.  X  |->  ( x  |`  B ) ) " U. K )  =  X )
30 pttop 21385 . . . . . . . . 9  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  ( Xt_ `  F
)  e.  Top )
312, 30syl5eqel 2705 . . . . . . . 8  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  J  e.  Top )
32313adant3 1081 . . . . . . 7  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  ->  J  e.  Top )
335topopn 20711 . . . . . . 7  |-  ( J  e.  Top  ->  X  e.  J )
3432, 33syl 17 . . . . . 6  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  ->  X  e.  J )
3529, 34eqeltrd 2701 . . . . 5  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  -> 
( `' ( x  e.  X  |->  ( x  |`  B ) ) " U. K )  e.  J
)
36 elsni 4194 . . . . . . 7  |-  ( v  e.  { U. K }  ->  v  =  U. K )
3736imaeq2d 5466 . . . . . 6  |-  ( v  e.  { U. K }  ->  ( `' ( x  e.  X  |->  ( x  |`  B )
) " v )  =  ( `' ( x  e.  X  |->  ( x  |`  B )
) " U. K
) )
3837eleq1d 2686 . . . . 5  |-  ( v  e.  { U. K }  ->  ( ( `' ( x  e.  X  |->  ( x  |`  B ) ) " v )  e.  J  <->  ( `' ( x  e.  X  |->  ( x  |`  B ) ) " U. K
)  e.  J ) )
3935, 38syl5ibrcom 237 . . . 4  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  -> 
( v  e.  { U. K }  ->  ( `' ( x  e.  X  |->  ( x  |`  B ) ) "
v )  e.  J
) )
4039ralrimiv 2965 . . 3  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  ->  A. v  e.  { U. K }  ( `' ( x  e.  X  |->  ( x  |`  B ) ) " v )  e.  J )
41 imaco 5640 . . . . . . . . 9  |-  ( ( `' ( x  e.  X  |->  ( x  |`  B ) )  o.  `' ( z  e. 
U. K  |->  ( z `
 k ) ) ) " u )  =  ( `' ( x  e.  X  |->  ( x  |`  B )
) " ( `' ( z  e.  U. K  |->  ( z `  k ) ) "
u ) )
42 cnvco 5308 . . . . . . . . . . 11  |-  `' ( ( z  e.  U. K  |->  ( z `  k ) )  o.  ( x  e.  X  |->  ( x  |`  B ) ) )  =  ( `' ( x  e.  X  |->  ( x  |`  B ) )  o.  `' ( z  e. 
U. K  |->  ( z `
 k ) ) )
4325adantlr 751 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  V  /\  F : A
--> Top  /\  B  C_  A )  /\  (
k  e.  B  /\  u  e.  ( F `  k ) ) )  /\  x  e.  X
)  ->  ( x  |`  B )  e.  U. K )
44 eqidd 2623 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  (
x  e.  X  |->  ( x  |`  B )
)  =  ( x  e.  X  |->  ( x  |`  B ) ) )
45 eqidd 2623 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  (
z  e.  U. K  |->  ( z `  k
) )  =  ( z  e.  U. K  |->  ( z `  k
) ) )
46 fveq1 6190 . . . . . . . . . . . . . 14  |-  ( z  =  ( x  |`  B )  ->  (
z `  k )  =  ( ( x  |`  B ) `  k
) )
4743, 44, 45, 46fmptco 6396 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  (
( z  e.  U. K  |->  ( z `  k ) )  o.  ( x  e.  X  |->  ( x  |`  B ) ) )  =  ( x  e.  X  |->  ( ( x  |`  B ) `
 k ) ) )
48 fvres 6207 . . . . . . . . . . . . . . 15  |-  ( k  e.  B  ->  (
( x  |`  B ) `
 k )  =  ( x `  k
) )
4948ad2antrl 764 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  (
( x  |`  B ) `
 k )  =  ( x `  k
) )
5049mpteq2dv 4745 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  (
x  e.  X  |->  ( ( x  |`  B ) `
 k ) )  =  ( x  e.  X  |->  ( x `  k ) ) )
5147, 50eqtrd 2656 . . . . . . . . . . . 12  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  (
( z  e.  U. K  |->  ( z `  k ) )  o.  ( x  e.  X  |->  ( x  |`  B ) ) )  =  ( x  e.  X  |->  ( x `  k ) ) )
5251cnveqd 5298 . . . . . . . . . . 11  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  `' ( ( z  e. 
U. K  |->  ( z `
 k ) )  o.  ( x  e.  X  |->  ( x  |`  B ) ) )  =  `' ( x  e.  X  |->  ( x `
 k ) ) )
5342, 52syl5eqr 2670 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  ( `' ( x  e.  X  |->  ( x  |`  B ) )  o.  `' ( z  e. 
U. K  |->  ( z `
 k ) ) )  =  `' ( x  e.  X  |->  ( x `  k ) ) )
5453imaeq1d 5465 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  (
( `' ( x  e.  X  |->  ( x  |`  B ) )  o.  `' ( z  e. 
U. K  |->  ( z `
 k ) ) ) " u )  =  ( `' ( x  e.  X  |->  ( x `  k ) ) " u ) )
5541, 54syl5eqr 2670 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  ( `' ( x  e.  X  |->  ( x  |`  B ) ) "
( `' ( z  e.  U. K  |->  ( z `  k ) ) " u ) )  =  ( `' ( x  e.  X  |->  ( x `  k
) ) " u
) )
56 simpl1 1064 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  A  e.  V )
57 simpl2 1065 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  F : A --> Top )
58 simpl3 1066 . . . . . . . . . . 11  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  B  C_  A )
59 simprl 794 . . . . . . . . . . 11  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  k  e.  B )
6058, 59sseldd 3604 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  k  e.  A )
615, 2ptpjcn 21414 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  F : A --> Top  /\  k  e.  A )  ->  ( x  e.  X  |->  ( x `  k
) )  e.  ( J  Cn  ( F `
 k ) ) )
6256, 57, 60, 61syl3anc 1326 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  (
x  e.  X  |->  ( x `  k ) )  e.  ( J  Cn  ( F `  k ) ) )
63 simprr 796 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  u  e.  ( F `  k
) )
64 cnima 21069 . . . . . . . . 9  |-  ( ( ( x  e.  X  |->  ( x `  k
) )  e.  ( J  Cn  ( F `
 k ) )  /\  u  e.  ( F `  k ) )  ->  ( `' ( x  e.  X  |->  ( x `  k
) ) " u
)  e.  J )
6562, 63, 64syl2anc 693 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  ( `' ( x  e.  X  |->  ( x `  k ) ) "
u )  e.  J
)
6655, 65eqeltrd 2701 . . . . . . 7  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  ( `' ( x  e.  X  |->  ( x  |`  B ) ) "
( `' ( z  e.  U. K  |->  ( z `  k ) ) " u ) )  e.  J )
67 imaeq2 5462 . . . . . . . 8  |-  ( v  =  ( `' ( z  e.  U. K  |->  ( z `  k
) ) " u
)  ->  ( `' ( x  e.  X  |->  ( x  |`  B ) ) " v )  =  ( `' ( x  e.  X  |->  ( x  |`  B )
) " ( `' ( z  e.  U. K  |->  ( z `  k ) ) "
u ) ) )
6867eleq1d 2686 . . . . . . 7  |-  ( v  =  ( `' ( z  e.  U. K  |->  ( z `  k
) ) " u
)  ->  ( ( `' ( x  e.  X  |->  ( x  |`  B ) ) "
v )  e.  J  <->  ( `' ( x  e.  X  |->  ( x  |`  B ) ) "
( `' ( z  e.  U. K  |->  ( z `  k ) ) " u ) )  e.  J ) )
6966, 68syl5ibrcom 237 . . . . . 6  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  (
v  =  ( `' ( z  e.  U. K  |->  ( z `  k ) ) "
u )  ->  ( `' ( x  e.  X  |->  ( x  |`  B ) ) "
v )  e.  J
) )
7069rexlimdvva 3038 . . . . 5  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  -> 
( E. k  e.  B  E. u  e.  ( F `  k
) v  =  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u )  -> 
( `' ( x  e.  X  |->  ( x  |`  B ) ) "
v )  e.  J
) )
7170alrimiv 1855 . . . 4  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  ->  A. v ( E. k  e.  B  E. u  e.  ( F `  k
) v  =  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u )  -> 
( `' ( x  e.  X  |->  ( x  |`  B ) ) "
v )  e.  J
) )
72 eqid 2622 . . . . . . 7  |-  ( k  e.  B ,  u  e.  ( ( F  |`  B ) `  k
)  |->  ( `' ( z  e.  U. K  |->  ( z `  k
) ) " u
) )  =  ( k  e.  B ,  u  e.  ( ( F  |`  B ) `  k )  |->  ( `' ( z  e.  U. K  |->  ( z `  k ) ) "
u ) )
7372rnmpt2 6770 . . . . . 6  |-  ran  (
k  e.  B ,  u  e.  ( ( F  |`  B ) `  k )  |->  ( `' ( z  e.  U. K  |->  ( z `  k ) ) "
u ) )  =  { y  |  E. k  e.  B  E. u  e.  ( ( F  |`  B ) `  k ) y  =  ( `' ( z  e.  U. K  |->  ( z `  k ) ) " u ) }
7473raleqi 3142 . . . . 5  |-  ( A. v  e.  ran  ( k  e.  B ,  u  e.  ( ( F  |`  B ) `  k
)  |->  ( `' ( z  e.  U. K  |->  ( z `  k
) ) " u
) ) ( `' ( x  e.  X  |->  ( x  |`  B ) ) " v )  e.  J  <->  A. v  e.  { y  |  E. k  e.  B  E. u  e.  ( ( F  |`  B ) `  k ) y  =  ( `' ( z  e.  U. K  |->  ( z `  k ) ) " u ) }  ( `' ( x  e.  X  |->  ( x  |`  B )
) " v )  e.  J )
7512rexeqdv 3145 . . . . . . . 8  |-  ( k  e.  B  ->  ( E. u  e.  (
( F  |`  B ) `
 k ) y  =  ( `' ( z  e.  U. K  |->  ( z `  k
) ) " u
)  <->  E. u  e.  ( F `  k ) y  =  ( `' ( z  e.  U. K  |->  ( z `  k ) ) "
u ) ) )
76 eqeq1 2626 . . . . . . . . 9  |-  ( y  =  v  ->  (
y  =  ( `' ( z  e.  U. K  |->  ( z `  k ) ) "
u )  <->  v  =  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u ) ) )
7776rexbidv 3052 . . . . . . . 8  |-  ( y  =  v  ->  ( E. u  e.  ( F `  k )
y  =  ( `' ( z  e.  U. K  |->  ( z `  k ) ) "
u )  <->  E. u  e.  ( F `  k
) v  =  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u ) ) )
7875, 77sylan9bbr 737 . . . . . . 7  |-  ( ( y  =  v  /\  k  e.  B )  ->  ( E. u  e.  ( ( F  |`  B ) `  k
) y  =  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u )  <->  E. u  e.  ( F `  k
) v  =  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u ) ) )
7978rexbidva 3049 . . . . . 6  |-  ( y  =  v  ->  ( E. k  e.  B  E. u  e.  (
( F  |`  B ) `
 k ) y  =  ( `' ( z  e.  U. K  |->  ( z `  k
) ) " u
)  <->  E. k  e.  B  E. u  e.  ( F `  k )
v  =  ( `' ( z  e.  U. K  |->  ( z `  k ) ) "
u ) ) )
8079ralab 3367 . . . . 5  |-  ( A. v  e.  { y  |  E. k  e.  B  E. u  e.  (
( F  |`  B ) `
 k ) y  =  ( `' ( z  e.  U. K  |->  ( z `  k
) ) " u
) }  ( `' ( x  e.  X  |->  ( x  |`  B ) ) " v )  e.  J  <->  A. v
( E. k  e.  B  E. u  e.  ( F `  k
) v  =  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u )  -> 
( `' ( x  e.  X  |->  ( x  |`  B ) ) "
v )  e.  J
) )
8174, 80bitri 264 . . . 4  |-  ( A. v  e.  ran  ( k  e.  B ,  u  e.  ( ( F  |`  B ) `  k
)  |->  ( `' ( z  e.  U. K  |->  ( z `  k
) ) " u
) ) ( `' ( x  e.  X  |->  ( x  |`  B ) ) " v )  e.  J  <->  A. v
( E. k  e.  B  E. u  e.  ( F `  k
) v  =  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u )  -> 
( `' ( x  e.  X  |->  ( x  |`  B ) ) "
v )  e.  J
) )
8271, 81sylibr 224 . . 3  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  ->  A. v  e.  ran  ( k  e.  B ,  u  e.  (
( F  |`  B ) `
 k )  |->  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u ) ) ( `' ( x  e.  X  |->  ( x  |`  B ) ) "
v )  e.  J
)
83 ralunb 3794 . . 3  |-  ( A. v  e.  ( { U. K }  u.  ran  ( k  e.  B ,  u  e.  (
( F  |`  B ) `
 k )  |->  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u ) ) ) ( `' ( x  e.  X  |->  ( x  |`  B )
) " v )  e.  J  <->  ( A. v  e.  { U. K }  ( `' ( x  e.  X  |->  ( x  |`  B )
) " v )  e.  J  /\  A. v  e.  ran  ( k  e.  B ,  u  e.  ( ( F  |`  B ) `  k
)  |->  ( `' ( z  e.  U. K  |->  ( z `  k
) ) " u
) ) ( `' ( x  e.  X  |->  ( x  |`  B ) ) " v )  e.  J ) )
8440, 82, 83sylanbrc 698 . 2  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  ->  A. v  e.  ( { U. K }  u.  ran  ( k  e.  B ,  u  e.  (
( F  |`  B ) `
 k )  |->  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u ) ) ) ( `' ( x  e.  X  |->  ( x  |`  B )
) " v )  e.  J )
855toptopon 20722 . . . 4  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
8632, 85sylib 208 . . 3  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  ->  J  e.  (TopOn `  X
) )
87 snex 4908 . . . 4  |-  { U. K }  e.  _V
88 fvex 6201 . . . . . . . 8  |-  ( ( F  |`  B ) `  k )  e.  _V
8988abrexex 7141 . . . . . . 7  |-  { y  |  E. u  e.  ( ( F  |`  B ) `  k
) y  =  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u ) }  e.  _V
9089rgenw 2924 . . . . . 6  |-  A. k  e.  B  { y  |  E. u  e.  ( ( F  |`  B ) `
 k ) y  =  ( `' ( z  e.  U. K  |->  ( z `  k
) ) " u
) }  e.  _V
91 abrexex2g 7144 . . . . . 6  |-  ( ( B  e.  _V  /\  A. k  e.  B  {
y  |  E. u  e.  ( ( F  |`  B ) `  k
) y  =  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u ) }  e.  _V )  ->  { y  |  E. k  e.  B  E. u  e.  ( ( F  |`  B ) `  k ) y  =  ( `' ( z  e.  U. K  |->  ( z `  k ) ) " u ) }  e.  _V )
9217, 90, 91sylancl 694 . . . . 5  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  ->  { y  |  E. k  e.  B  E. u  e.  ( ( F  |`  B ) `  k ) y  =  ( `' ( z  e.  U. K  |->  ( z `  k ) ) " u ) }  e.  _V )
9373, 92syl5eqel 2705 . . . 4  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  ->  ran  ( k  e.  B ,  u  e.  (
( F  |`  B ) `
 k )  |->  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u ) )  e.  _V )
94 unexg 6959 . . . 4  |-  ( ( { U. K }  e.  _V  /\  ran  (
k  e.  B ,  u  e.  ( ( F  |`  B ) `  k )  |->  ( `' ( z  e.  U. K  |->  ( z `  k ) ) "
u ) )  e. 
_V )  ->  ( { U. K }  u.  ran  ( k  e.  B ,  u  e.  (
( F  |`  B ) `
 k )  |->  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u ) ) )  e.  _V )
9587, 93, 94sylancr 695 . . 3  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  -> 
( { U. K }  u.  ran  ( k  e.  B ,  u  e.  ( ( F  |`  B ) `  k
)  |->  ( `' ( z  e.  U. K  |->  ( z `  k
) ) " u
) ) )  e. 
_V )
96 eqid 2622 . . . . 5  |-  U. K  =  U. K
9720, 96, 72ptval2 21404 . . . 4  |-  ( ( B  e.  _V  /\  ( F  |`  B ) : B --> Top )  ->  K  =  ( topGen `  ( fi `  ( { U. K }  u.  ran  ( k  e.  B ,  u  e.  (
( F  |`  B ) `
 k )  |->  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u ) ) ) ) ) )
9817, 19, 97syl2anc 693 . . 3  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  ->  K  =  ( topGen `  ( fi `  ( { U. K }  u.  ran  ( k  e.  B ,  u  e.  (
( F  |`  B ) `
 k )  |->  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u ) ) ) ) ) )
99 pttop 21385 . . . . . 6  |-  ( ( B  e.  _V  /\  ( F  |`  B ) : B --> Top )  ->  ( Xt_ `  ( F  |`  B ) )  e.  Top )
10017, 19, 99syl2anc 693 . . . . 5  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  -> 
( Xt_ `  ( F  |`  B ) )  e. 
Top )
10120, 100syl5eqel 2705 . . . 4  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  ->  K  e.  Top )
10296toptopon 20722 . . . 4  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
103101, 102sylib 208 . . 3  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  ->  K  e.  (TopOn `  U. K ) )
10486, 95, 98, 103subbascn 21058 . 2  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  -> 
( ( x  e.  X  |->  ( x  |`  B ) )  e.  ( J  Cn  K
)  <->  ( ( x  e.  X  |->  ( x  |`  B ) ) : X --> U. K  /\  A. v  e.  ( { U. K }  u.  ran  ( k  e.  B ,  u  e.  (
( F  |`  B ) `
 k )  |->  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u ) ) ) ( `' ( x  e.  X  |->  ( x  |`  B )
) " v )  e.  J ) ) )
10527, 84, 104mpbir2and 957 1  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  -> 
( x  e.  X  |->  ( x  |`  B ) )  e.  ( J  Cn  K ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037   A.wal 1481    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913   _Vcvv 3200    u. cun 3572    C_ wss 3574   {csn 4177   U.cuni 4436    |-> cmpt 4729   `'ccnv 5113   ran crn 5115    |` cres 5116   "cima 5117    o. ccom 5118   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   X_cixp 7908   ficfi 8316   topGenctg 16098   Xt_cpt 16099   Topctop 20698  TopOnctopon 20715    Cn ccn 21028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-fin 7959  df-fi 8317  df-topgen 16104  df-pt 16105  df-top 20699  df-topon 20716  df-bases 20750  df-cn 21031
This theorem is referenced by:  ptunhmeo  21611  tmdgsum  21899
  Copyright terms: Public domain W3C validator