Proof of Theorem subsaliuncllem
Step | Hyp | Ref
| Expression |
1 | | subsaliuncllem.e |
. . 3
   |
2 | | subsaliuncllem.h |
. . . . . . 7
   |
3 | | subsaliuncllem.f |
. . . . . . . 8
   |
4 | | vex 3203 |
. . . . . . . . . . . . . 14
 |
5 | | subsaliuncllem.g |
. . . . . . . . . . . . . . 15
 
         |
6 | 5 | elrnmpt 5372 |
. . . . . . . . . . . . . 14
              |
7 | 4, 6 | ax-mp 5 |
. . . . . . . . . . . . 13

           |
8 | 7 | biimpi 206 |
. . . . . . . . . . . 12
 

         |
9 | | id 22 |
. . . . . . . . . . . . . . . 16
                   |
10 | | ssrab2 3687 |
. . . . . . . . . . . . . . . . 17

        |
11 | 10 | a1i 11 |
. . . . . . . . . . . . . . . 16
         
         |
12 | 9, 11 | eqsstrd 3639 |
. . . . . . . . . . . . . . 15
           |
13 | 12 | a1i 11 |
. . . . . . . . . . . . . 14
  
          |
14 | 13 | rexlimiv 3027 |
. . . . . . . . . . . . 13
         
  |
15 | 14 | a1i 11 |
. . . . . . . . . . . 12
              |
16 | 8, 15 | mpd 15 |
. . . . . . . . . . 11

  |
17 | 16 | adantl 482 |
. . . . . . . . . 10
 
   |
18 | | subsaliuncllem.y |
. . . . . . . . . . 11
         |
19 | 18 | r19.21bi 2932 |
. . . . . . . . . 10
 
       |
20 | 17, 19 | sseldd 3604 |
. . . . . . . . 9
 
       |
21 | 20 | ex 450 |
. . . . . . . 8
         |
22 | 3, 21 | ralrimi 2957 |
. . . . . . 7
         |
23 | 2, 22 | jca 554 |
. . . . . 6
           |
24 | | ffnfv 6388 |
. . . . . 6
    
 
        |
25 | 23, 24 | sylibr 224 |
. . . . 5
       |
26 | | eqid 2622 |
. . . . . . . . 9

       
        |
27 | | subsaliuncllem.s |
. . . . . . . . 9
   |
28 | 26, 27 | rabexd 4814 |
. . . . . . . 8
           |
29 | 28 | ralrimivw 2967 |
. . . . . . 7
            |
30 | 5 | fnmpt 6020 |
. . . . . . 7
 

         |
31 | 29, 30 | syl 17 |
. . . . . 6
   |
32 | | dffn3 6054 |
. . . . . 6

      |
33 | 31, 32 | sylib 208 |
. . . . 5
       |
34 | | fco 6058 |
. . . . 5
           
       |
35 | 25, 33, 34 | syl2anc 693 |
. . . 4
         |
36 | | nnex 11026 |
. . . . . 6
 |
37 | 36 | a1i 11 |
. . . . 5
   |
38 | 27, 37 | elmapd 7871 |
. . . 4
               |
39 | 35, 38 | mpbird 247 |
. . 3
       |
40 | 1, 39 | syl5eqel 2705 |
. 2
     |
41 | 33 | ffvelrnda 6359 |
. . . . . . 7
 

      |
42 | 18 | adantr 481 |
. . . . . . 7
 

        |
43 | | fveq2 6191 |
. . . . . . . . 9
                   |
44 | | id 22 |
. . . . . . . . 9
           |
45 | 43, 44 | eleq12d 2695 |
. . . . . . . 8
         
               |
46 | 45 | rspcva 3307 |
. . . . . . 7
                           |
47 | 41, 42, 46 | syl2anc 693 |
. . . . . 6
 

              |
48 | 33 | ffund 6049 |
. . . . . . . . 9
   |
49 | 48 | adantr 481 |
. . . . . . . 8
 

  |
50 | | simpr 477 |
. . . . . . . . 9
 

  |
51 | 5 | dmeqi 5325 |
. . . . . . . . . . . . 13
           |
52 | 51 | a1i 11 |
. . . . . . . . . . . 12
 

          |
53 | | dmmptg 5632 |
. . . . . . . . . . . . 13
 

      
            |
54 | 29, 53 | syl 17 |
. . . . . . . . . . . 12
             |
55 | 52, 54 | eqtrd 2656 |
. . . . . . . . . . 11
   |
56 | 55 | eqcomd 2628 |
. . . . . . . . . 10
   |
57 | 56 | adantr 481 |
. . . . . . . . 9
 

  |
58 | 50, 57 | eleqtrd 2703 |
. . . . . . . 8
 

  |
59 | 49, 58, 1 | fvcod 39423 |
. . . . . . 7
 

              |
60 | 5 | a1i 11 |
. . . . . . . . 9
  
          |
61 | 28 | adantr 481 |
. . . . . . . . 9
 


         |
62 | 60, 61 | fvmpt2d 6293 |
. . . . . . . 8
 

              |
63 | 62 | eqcomd 2628 |
. . . . . . 7
 


             |
64 | 59, 63 | eleq12d 2695 |
. . . . . 6
 

            
               |
65 | 47, 64 | mpbird 247 |
. . . . 5
 

              |
66 | | ineq1 3807 |
. . . . . . 7
     
         |
67 | 66 | eqeq2d 2632 |
. . . . . 6
           
        
    |
68 | 67 | elrab 3363 |
. . . . 5
            
    
             |
69 | 65, 68 | sylib 208 |
. . . 4
 

                  |
70 | 69 | simprd 479 |
. . 3
 

            |
71 | 70 | ralrimiva 2966 |
. 2
              |
72 | | fveq1 6190 |
. . . . . 6
           |
73 | 72 | ineq1d 3813 |
. . . . 5
     
         |
74 | 73 | eqeq2d 2632 |
. . . 4
           
        
    |
75 | 74 | ralbidv 2986 |
. . 3
  
         
         
    |
76 | 75 | rspcev 3309 |
. 2
                
   
            |
77 | 40, 71, 76 | syl2anc 693 |
1
                  |