MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdccatin2d Structured version   Visualization version   Unicode version

Theorem swrdccatin2d 13500
Description: The subword of a concatenation of two words within the second of the concatenated words. (Contributed by AV, 31-May-2018.) (Revised by Mario Carneiro/AV, 21-Oct-2018.)
Hypotheses
Ref Expression
swrdccatind.l  |-  ( ph  ->  ( # `  A
)  =  L )
swrdccatind.w  |-  ( ph  ->  ( A  e. Word  V  /\  B  e. Word  V ) )
swrdccatin2d.1  |-  ( ph  ->  M  e.  ( L ... N ) )
swrdccatin2d.2  |-  ( ph  ->  N  e.  ( L ... ( L  +  ( # `  B ) ) ) )
Assertion
Ref Expression
swrdccatin2d  |-  ( ph  ->  ( ( A ++  B
) substr  <. M ,  N >. )  =  ( B substr  <. ( M  -  L
) ,  ( N  -  L ) >.
) )

Proof of Theorem swrdccatin2d
StepHypRef Expression
1 swrdccatind.l . 2  |-  ( ph  ->  ( # `  A
)  =  L )
2 swrdccatind.w . . . . . . 7  |-  ( ph  ->  ( A  e. Word  V  /\  B  e. Word  V ) )
32adantl 482 . . . . . 6  |-  ( ( ( # `  A
)  =  L  /\  ph )  ->  ( A  e. Word  V  /\  B  e. Word  V ) )
4 swrdccatin2d.1 . . . . . . . . 9  |-  ( ph  ->  M  e.  ( L ... N ) )
5 swrdccatin2d.2 . . . . . . . . 9  |-  ( ph  ->  N  e.  ( L ... ( L  +  ( # `  B ) ) ) )
64, 5jca 554 . . . . . . . 8  |-  ( ph  ->  ( M  e.  ( L ... N )  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )
76adantl 482 . . . . . . 7  |-  ( ( ( # `  A
)  =  L  /\  ph )  ->  ( M  e.  ( L ... N
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )
8 oveq1 6657 . . . . . . . . . 10  |-  ( (
# `  A )  =  L  ->  ( (
# `  A ) ... N )  =  ( L ... N ) )
98eleq2d 2687 . . . . . . . . 9  |-  ( (
# `  A )  =  L  ->  ( M  e.  ( ( # `  A ) ... N
)  <->  M  e.  ( L ... N ) ) )
10 id 22 . . . . . . . . . . 11  |-  ( (
# `  A )  =  L  ->  ( # `  A )  =  L )
11 oveq1 6657 . . . . . . . . . . 11  |-  ( (
# `  A )  =  L  ->  ( (
# `  A )  +  ( # `  B
) )  =  ( L  +  ( # `  B ) ) )
1210, 11oveq12d 6668 . . . . . . . . . 10  |-  ( (
# `  A )  =  L  ->  ( (
# `  A ) ... ( ( # `  A
)  +  ( # `  B ) ) )  =  ( L ... ( L  +  ( # `
 B ) ) ) )
1312eleq2d 2687 . . . . . . . . 9  |-  ( (
# `  A )  =  L  ->  ( N  e.  ( ( # `  A ) ... (
( # `  A )  +  ( # `  B
) ) )  <->  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )
149, 13anbi12d 747 . . . . . . . 8  |-  ( (
# `  A )  =  L  ->  ( ( M  e.  ( (
# `  A ) ... N )  /\  N  e.  ( ( # `  A
) ... ( ( # `  A )  +  (
# `  B )
) ) )  <->  ( M  e.  ( L ... N
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) ) )
1514adantr 481 . . . . . . 7  |-  ( ( ( # `  A
)  =  L  /\  ph )  ->  ( ( M  e.  ( ( # `
 A ) ... N )  /\  N  e.  ( ( # `  A
) ... ( ( # `  A )  +  (
# `  B )
) ) )  <->  ( M  e.  ( L ... N
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) ) )
167, 15mpbird 247 . . . . . 6  |-  ( ( ( # `  A
)  =  L  /\  ph )  ->  ( M  e.  ( ( # `  A
) ... N )  /\  N  e.  ( ( # `
 A ) ... ( ( # `  A
)  +  ( # `  B ) ) ) ) )
173, 16jca 554 . . . . 5  |-  ( ( ( # `  A
)  =  L  /\  ph )  ->  ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( ( # `
 A ) ... N )  /\  N  e.  ( ( # `  A
) ... ( ( # `  A )  +  (
# `  B )
) ) ) ) )
1817ex 450 . . . 4  |-  ( (
# `  A )  =  L  ->  ( ph  ->  ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( M  e.  ( ( # `  A
) ... N )  /\  N  e.  ( ( # `
 A ) ... ( ( # `  A
)  +  ( # `  B ) ) ) ) ) ) )
19 eqid 2622 . . . . . 6  |-  ( # `  A )  =  (
# `  A )
2019swrdccatin2 13487 . . . . 5  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( M  e.  ( ( # `  A
) ... N )  /\  N  e.  ( ( # `
 A ) ... ( ( # `  A
)  +  ( # `  B ) ) ) )  ->  ( ( A ++  B ) substr  <. M ,  N >. )  =  ( B substr  <. ( M  -  ( # `  A ) ) ,  ( N  -  ( # `  A
) ) >. )
) )
2120imp 445 . . . 4  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( ( # `  A
) ... N )  /\  N  e.  ( ( # `
 A ) ... ( ( # `  A
)  +  ( # `  B ) ) ) ) )  ->  (
( A ++  B ) substr  <. M ,  N >. )  =  ( B substr  <. ( M  -  ( # `  A
) ) ,  ( N  -  ( # `  A ) ) >.
) )
2218, 21syl6 35 . . 3  |-  ( (
# `  A )  =  L  ->  ( ph  ->  ( ( A ++  B
) substr  <. M ,  N >. )  =  ( B substr  <. ( M  -  ( # `
 A ) ) ,  ( N  -  ( # `  A ) ) >. ) ) )
23 oveq2 6658 . . . . . 6  |-  ( (
# `  A )  =  L  ->  ( M  -  ( # `  A
) )  =  ( M  -  L ) )
24 oveq2 6658 . . . . . 6  |-  ( (
# `  A )  =  L  ->  ( N  -  ( # `  A
) )  =  ( N  -  L ) )
2523, 24opeq12d 4410 . . . . 5  |-  ( (
# `  A )  =  L  ->  <. ( M  -  ( # `  A
) ) ,  ( N  -  ( # `  A ) ) >.  =  <. ( M  -  L ) ,  ( N  -  L )
>. )
2625oveq2d 6666 . . . 4  |-  ( (
# `  A )  =  L  ->  ( B substr  <. ( M  -  ( # `
 A ) ) ,  ( N  -  ( # `  A ) ) >. )  =  ( B substr  <. ( M  -  L ) ,  ( N  -  L )
>. ) )
2726eqeq2d 2632 . . 3  |-  ( (
# `  A )  =  L  ->  ( ( ( A ++  B ) substr  <. M ,  N >. )  =  ( B substr  <. ( M  -  ( # `  A
) ) ,  ( N  -  ( # `  A ) ) >.
)  <->  ( ( A ++  B ) substr  <. M ,  N >. )  =  ( B substr  <. ( M  -  L ) ,  ( N  -  L )
>. ) ) )
2822, 27sylibd 229 . 2  |-  ( (
# `  A )  =  L  ->  ( ph  ->  ( ( A ++  B
) substr  <. M ,  N >. )  =  ( B substr  <. ( M  -  L
) ,  ( N  -  L ) >.
) ) )
291, 28mpcom 38 1  |-  ( ph  ->  ( ( A ++  B
) substr  <. M ,  N >. )  =  ( B substr  <. ( M  -  L
) ,  ( N  -  L ) >.
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   <.cop 4183   ` cfv 5888  (class class class)co 6650    + caddc 9939    - cmin 10266   ...cfz 12326   #chash 13117  Word cword 13291   ++ cconcat 13293   substr csubstr 13295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-substr 13303
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator