MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgfixfo Structured version   Visualization version   Unicode version

Theorem symgfixfo 17859
Description: The mapping of a permutation of a set fixing an element to a permutation of the set without the fixed element is an onto function. (Contributed by AV, 7-Jan-2019.)
Hypotheses
Ref Expression
symgfixf.p  |-  P  =  ( Base `  ( SymGrp `
 N ) )
symgfixf.q  |-  Q  =  { q  e.  P  |  ( q `  K )  =  K }
symgfixf.s  |-  S  =  ( Base `  ( SymGrp `
 ( N  \  { K } ) ) )
symgfixf.h  |-  H  =  ( q  e.  Q  |->  ( q  |`  ( N  \  { K }
) ) )
Assertion
Ref Expression
symgfixfo  |-  ( ( N  e.  V  /\  K  e.  N )  ->  H : Q -onto-> S
)
Distinct variable groups:    K, q    P, q    N, q    Q, q    S, q
Allowed substitution hints:    H( q)    V( q)

Proof of Theorem symgfixfo
Dummy variables  p  i  s  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 symgfixf.p . . . 4  |-  P  =  ( Base `  ( SymGrp `
 N ) )
2 symgfixf.q . . . 4  |-  Q  =  { q  e.  P  |  ( q `  K )  =  K }
3 symgfixf.s . . . 4  |-  S  =  ( Base `  ( SymGrp `
 ( N  \  { K } ) ) )
4 symgfixf.h . . . 4  |-  H  =  ( q  e.  Q  |->  ( q  |`  ( N  \  { K }
) ) )
51, 2, 3, 4symgfixf 17856 . . 3  |-  ( K  e.  N  ->  H : Q --> S )
65adantl 482 . 2  |-  ( ( N  e.  V  /\  K  e.  N )  ->  H : Q --> S )
7 eqeq1 2626 . . . . . . . . . 10  |-  ( i  =  j  ->  (
i  =  K  <->  j  =  K ) )
8 fveq2 6191 . . . . . . . . . 10  |-  ( i  =  j  ->  (
s `  i )  =  ( s `  j ) )
97, 8ifbieq2d 4111 . . . . . . . . 9  |-  ( i  =  j  ->  if ( i  =  K ,  K ,  ( s `  i ) )  =  if ( j  =  K ,  K ,  ( s `  j ) ) )
109cbvmptv 4750 . . . . . . . 8  |-  ( i  e.  N  |->  if ( i  =  K ,  K ,  ( s `  i ) ) )  =  ( j  e.  N  |->  if ( j  =  K ,  K ,  ( s `  j ) ) )
111, 2, 3, 4, 10symgfixfolem1 17858 . . . . . . 7  |-  ( ( N  e.  V  /\  K  e.  N  /\  s  e.  S )  ->  ( i  e.  N  |->  if ( i  =  K ,  K , 
( s `  i
) ) )  e.  Q )
12113expa 1265 . . . . . 6  |-  ( ( ( N  e.  V  /\  K  e.  N
)  /\  s  e.  S )  ->  (
i  e.  N  |->  if ( i  =  K ,  K ,  ( s `  i ) ) )  e.  Q
)
13 simpr 477 . . . . . . . . . . . . 13  |-  ( ( N  e.  V  /\  K  e.  N )  ->  K  e.  N )
1413anim1i 592 . . . . . . . . . . . 12  |-  ( ( ( N  e.  V  /\  K  e.  N
)  /\  s  e.  S )  ->  ( K  e.  N  /\  s  e.  S )
)
1514adantl 482 . . . . . . . . . . 11  |-  ( ( p  =  ( i  e.  N  |->  if ( i  =  K ,  K ,  ( s `  i ) ) )  /\  ( ( N  e.  V  /\  K  e.  N )  /\  s  e.  S ) )  -> 
( K  e.  N  /\  s  e.  S
) )
16 eqid 2622 . . . . . . . . . . . 12  |-  ( i  e.  N  |->  if ( i  =  K ,  K ,  ( s `  i ) ) )  =  ( i  e.  N  |->  if ( i  =  K ,  K ,  ( s `  i ) ) )
173, 16symgextres 17845 . . . . . . . . . . 11  |-  ( ( K  e.  N  /\  s  e.  S )  ->  ( ( i  e.  N  |->  if ( i  =  K ,  K ,  ( s `  i ) ) )  |`  ( N  \  { K } ) )  =  s )
1815, 17syl 17 . . . . . . . . . 10  |-  ( ( p  =  ( i  e.  N  |->  if ( i  =  K ,  K ,  ( s `  i ) ) )  /\  ( ( N  e.  V  /\  K  e.  N )  /\  s  e.  S ) )  -> 
( ( i  e.  N  |->  if ( i  =  K ,  K ,  ( s `  i ) ) )  |`  ( N  \  { K } ) )  =  s )
1918eqcomd 2628 . . . . . . . . 9  |-  ( ( p  =  ( i  e.  N  |->  if ( i  =  K ,  K ,  ( s `  i ) ) )  /\  ( ( N  e.  V  /\  K  e.  N )  /\  s  e.  S ) )  -> 
s  =  ( ( i  e.  N  |->  if ( i  =  K ,  K ,  ( s `  i ) ) )  |`  ( N  \  { K }
) ) )
20 reseq1 5390 . . . . . . . . . . 11  |-  ( p  =  ( i  e.  N  |->  if ( i  =  K ,  K ,  ( s `  i ) ) )  ->  ( p  |`  ( N  \  { K } ) )  =  ( ( i  e.  N  |->  if ( i  =  K ,  K ,  ( s `  i ) ) )  |`  ( N  \  { K } ) ) )
2120eqeq2d 2632 . . . . . . . . . 10  |-  ( p  =  ( i  e.  N  |->  if ( i  =  K ,  K ,  ( s `  i ) ) )  ->  ( s  =  ( p  |`  ( N  \  { K }
) )  <->  s  =  ( ( i  e.  N  |->  if ( i  =  K ,  K ,  ( s `  i ) ) )  |`  ( N  \  { K } ) ) ) )
2221adantr 481 . . . . . . . . 9  |-  ( ( p  =  ( i  e.  N  |->  if ( i  =  K ,  K ,  ( s `  i ) ) )  /\  ( ( N  e.  V  /\  K  e.  N )  /\  s  e.  S ) )  -> 
( s  =  ( p  |`  ( N  \  { K } ) )  <->  s  =  ( ( i  e.  N  |->  if ( i  =  K ,  K , 
( s `  i
) ) )  |`  ( N  \  { K } ) ) ) )
2319, 22mpbird 247 . . . . . . . 8  |-  ( ( p  =  ( i  e.  N  |->  if ( i  =  K ,  K ,  ( s `  i ) ) )  /\  ( ( N  e.  V  /\  K  e.  N )  /\  s  e.  S ) )  -> 
s  =  ( p  |`  ( N  \  { K } ) ) )
2423ex 450 . . . . . . 7  |-  ( p  =  ( i  e.  N  |->  if ( i  =  K ,  K ,  ( s `  i ) ) )  ->  ( ( ( N  e.  V  /\  K  e.  N )  /\  s  e.  S
)  ->  s  =  ( p  |`  ( N 
\  { K }
) ) ) )
2524adantl 482 . . . . . 6  |-  ( ( ( ( N  e.  V  /\  K  e.  N )  /\  s  e.  S )  /\  p  =  ( i  e.  N  |->  if ( i  =  K ,  K ,  ( s `  i ) ) ) )  ->  ( (
( N  e.  V  /\  K  e.  N
)  /\  s  e.  S )  ->  s  =  ( p  |`  ( N  \  { K } ) ) ) )
2612, 25rspcimedv 3311 . . . . 5  |-  ( ( ( N  e.  V  /\  K  e.  N
)  /\  s  e.  S )  ->  (
( ( N  e.  V  /\  K  e.  N )  /\  s  e.  S )  ->  E. p  e.  Q  s  =  ( p  |`  ( N 
\  { K }
) ) ) )
2726pm2.43i 52 . . . 4  |-  ( ( ( N  e.  V  /\  K  e.  N
)  /\  s  e.  S )  ->  E. p  e.  Q  s  =  ( p  |`  ( N 
\  { K }
) ) )
284fvtresfn 6284 . . . . . . 7  |-  ( p  e.  Q  ->  ( H `  p )  =  ( p  |`  ( N  \  { K } ) ) )
2928eqeq2d 2632 . . . . . 6  |-  ( p  e.  Q  ->  (
s  =  ( H `
 p )  <->  s  =  ( p  |`  ( N 
\  { K }
) ) ) )
3029adantl 482 . . . . 5  |-  ( ( ( ( N  e.  V  /\  K  e.  N )  /\  s  e.  S )  /\  p  e.  Q )  ->  (
s  =  ( H `
 p )  <->  s  =  ( p  |`  ( N 
\  { K }
) ) ) )
3130rexbidva 3049 . . . 4  |-  ( ( ( N  e.  V  /\  K  e.  N
)  /\  s  e.  S )  ->  ( E. p  e.  Q  s  =  ( H `  p )  <->  E. p  e.  Q  s  =  ( p  |`  ( N 
\  { K }
) ) ) )
3227, 31mpbird 247 . . 3  |-  ( ( ( N  e.  V  /\  K  e.  N
)  /\  s  e.  S )  ->  E. p  e.  Q  s  =  ( H `  p ) )
3332ralrimiva 2966 . 2  |-  ( ( N  e.  V  /\  K  e.  N )  ->  A. s  e.  S  E. p  e.  Q  s  =  ( H `  p ) )
34 dffo3 6374 . 2  |-  ( H : Q -onto-> S  <->  ( H : Q --> S  /\  A. s  e.  S  E. p  e.  Q  s  =  ( H `  p ) ) )
356, 33, 34sylanbrc 698 1  |-  ( ( N  e.  V  /\  K  e.  N )  ->  H : Q -onto-> S
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916    \ cdif 3571   ifcif 4086   {csn 4177    |-> cmpt 4729    |` cres 5116   -->wf 5884   -onto->wfo 5886   ` cfv 5888   Basecbs 15857   SymGrpcsymg 17797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-tset 15960  df-symg 17798
This theorem is referenced by:  symgfixf1o  17860
  Copyright terms: Public domain W3C validator