MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzsubsubfz Structured version   Visualization version   Unicode version

Theorem uzsubsubfz 12363
Description: Membership of an integer greater than L decreased by ( L - M ) in an M based finite set of sequential integers. (Contributed by Alexander van der Vekens, 14-Sep-2018.)
Assertion
Ref Expression
uzsubsubfz  |-  ( ( L  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  L )
)  ->  ( N  -  ( L  -  M ) )  e.  ( M ... N
) )

Proof of Theorem uzsubsubfz
StepHypRef Expression
1 eluz2 11693 . . 3  |-  ( L  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  L  e.  ZZ  /\  M  <_  L ) )
2 eluz2 11693 . . . 4  |-  ( N  e.  ( ZZ>= `  L
)  <->  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )
3 simpr 477 . . . . . . . . . . . . 13  |-  ( ( ( L  e.  ZZ  /\  N  e.  ZZ )  /\  M  e.  ZZ )  ->  M  e.  ZZ )
4 simpr 477 . . . . . . . . . . . . . 14  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  ZZ )
54adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( L  e.  ZZ  /\  N  e.  ZZ )  /\  M  e.  ZZ )  ->  N  e.  ZZ )
6 zsubcl 11419 . . . . . . . . . . . . . . 15  |-  ( ( L  e.  ZZ  /\  M  e.  ZZ )  ->  ( L  -  M
)  e.  ZZ )
76adantlr 751 . . . . . . . . . . . . . 14  |-  ( ( ( L  e.  ZZ  /\  N  e.  ZZ )  /\  M  e.  ZZ )  ->  ( L  -  M )  e.  ZZ )
85, 7zsubcld 11487 . . . . . . . . . . . . 13  |-  ( ( ( L  e.  ZZ  /\  N  e.  ZZ )  /\  M  e.  ZZ )  ->  ( N  -  ( L  -  M
) )  e.  ZZ )
93, 5, 83jca 1242 . . . . . . . . . . . 12  |-  ( ( ( L  e.  ZZ  /\  N  e.  ZZ )  /\  M  e.  ZZ )  ->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( N  -  ( L  -  M ) )  e.  ZZ ) )
109ex 450 . . . . . . . . . . 11  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  e.  ZZ  ->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( N  -  ( L  -  M )
)  e.  ZZ ) ) )
11103adant3 1081 . . . . . . . . . 10  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  ->  ( M  e.  ZZ  ->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( N  -  ( L  -  M ) )  e.  ZZ ) ) )
1211com12 32 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  (
( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  -> 
( M  e.  ZZ  /\  N  e.  ZZ  /\  ( N  -  ( L  -  M )
)  e.  ZZ ) ) )
1312adantr 481 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  M  <_  L )  -> 
( ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  ->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( N  -  ( L  -  M ) )  e.  ZZ ) ) )
1413imp 445 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( N  -  ( L  -  M ) )  e.  ZZ ) )
15 zre 11381 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  ZZ  ->  N  e.  RR )
1615adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  RR )
1716adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( L  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  e.  ZZ  /\  M  <_  L ) )  ->  N  e.  RR )
18 zre 11381 . . . . . . . . . . . . . . . . 17  |-  ( L  e.  ZZ  ->  L  e.  RR )
1918adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ )  ->  L  e.  RR )
2019adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( L  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  e.  ZZ  /\  M  <_  L ) )  ->  L  e.  RR )
2117, 20subge0d 10617 . . . . . . . . . . . . . 14  |-  ( ( ( L  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  e.  ZZ  /\  M  <_  L ) )  -> 
( 0  <_  ( N  -  L )  <->  L  <_  N ) )
2221exbiri 652 . . . . . . . . . . . . 13  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  e.  ZZ  /\  M  <_  L )  ->  ( L  <_  N  ->  0  <_  ( N  -  L
) ) ) )
2322com23 86 . . . . . . . . . . . 12  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ )  ->  ( L  <_  N  ->  ( ( M  e.  ZZ  /\  M  <_  L )  ->  0  <_  ( N  -  L
) ) ) )
24233impia 1261 . . . . . . . . . . 11  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  ->  (
( M  e.  ZZ  /\  M  <_  L )  ->  0  <_  ( N  -  L ) ) )
2524impcom 446 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  0  <_  ( N  -  L )
)
26 zre 11381 . . . . . . . . . . . . 13  |-  ( M  e.  ZZ  ->  M  e.  RR )
2726adantr 481 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  M  <_  L )  ->  M  e.  RR )
2827adantr 481 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  M  e.  RR )
29 resubcl 10345 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  L  e.  RR )  ->  ( N  -  L
)  e.  RR )
3015, 18, 29syl2anr 495 . . . . . . . . . . . . 13  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  -  L
)  e.  RR )
31303adant3 1081 . . . . . . . . . . . 12  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  ->  ( N  -  L )  e.  RR )
3231adantl 482 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  ( N  -  L )  e.  RR )
3328, 32addge02d 10616 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  ( 0  <_ 
( N  -  L
)  <->  M  <_  ( ( N  -  L )  +  M ) ) )
3425, 33mpbid 222 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  M  <_  (
( N  -  L
)  +  M ) )
35 zcn 11382 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  N  e.  CC )
36353ad2ant2 1083 . . . . . . . . . . 11  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  ->  N  e.  CC )
3736adantl 482 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  N  e.  CC )
38 zcn 11382 . . . . . . . . . . . 12  |-  ( L  e.  ZZ  ->  L  e.  CC )
39383ad2ant1 1082 . . . . . . . . . . 11  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  ->  L  e.  CC )
4039adantl 482 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  L  e.  CC )
41 zcn 11382 . . . . . . . . . . . 12  |-  ( M  e.  ZZ  ->  M  e.  CC )
4241adantr 481 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  M  <_  L )  ->  M  e.  CC )
4342adantr 481 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  M  e.  CC )
4437, 40, 43subsubd 10420 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  ( N  -  ( L  -  M
) )  =  ( ( N  -  L
)  +  M ) )
4534, 44breqtrrd 4681 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  M  <_  ( N  -  ( L  -  M ) ) )
46183ad2ant1 1082 . . . . . . . . . . . . 13  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  ->  L  e.  RR )
47 subge0 10541 . . . . . . . . . . . . 13  |-  ( ( L  e.  RR  /\  M  e.  RR )  ->  ( 0  <_  ( L  -  M )  <->  M  <_  L ) )
4846, 26, 47syl2anr 495 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  ( 0  <_ 
( L  -  M
)  <->  M  <_  L ) )
4948exbiri 652 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  (
( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  -> 
( M  <_  L  ->  0  <_  ( L  -  M ) ) ) )
5049com23 86 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  ( M  <_  L  ->  (
( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  -> 
0  <_  ( L  -  M ) ) ) )
5150imp31 448 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  0  <_  ( L  -  M )
)
52153ad2ant2 1083 . . . . . . . . . . 11  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  ->  N  e.  RR )
5352adantl 482 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  N  e.  RR )
54 resubcl 10345 . . . . . . . . . . 11  |-  ( ( L  e.  RR  /\  M  e.  RR )  ->  ( L  -  M
)  e.  RR )
5546, 27, 54syl2anr 495 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  ( L  -  M )  e.  RR )
5653, 55subge02d 10619 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  ( 0  <_ 
( L  -  M
)  <->  ( N  -  ( L  -  M
) )  <_  N
) )
5751, 56mpbid 222 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  ( N  -  ( L  -  M
) )  <_  N
)
5845, 57jca 554 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  ( M  <_ 
( N  -  ( L  -  M )
)  /\  ( N  -  ( L  -  M ) )  <_  N ) )
59 elfz2 12333 . . . . . . 7  |-  ( ( N  -  ( L  -  M ) )  e.  ( M ... N )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( N  -  ( L  -  M ) )  e.  ZZ )  /\  ( M  <_  ( N  -  ( L  -  M
) )  /\  ( N  -  ( L  -  M ) )  <_  N ) ) )
6014, 58, 59sylanbrc 698 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  ( N  -  ( L  -  M
) )  e.  ( M ... N ) )
6160ex 450 . . . . 5  |-  ( ( M  e.  ZZ  /\  M  <_  L )  -> 
( ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  ->  ( N  -  ( L  -  M ) )  e.  ( M ... N
) ) )
62613adant2 1080 . . . 4  |-  ( ( M  e.  ZZ  /\  L  e.  ZZ  /\  M  <_  L )  ->  (
( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  -> 
( N  -  ( L  -  M )
)  e.  ( M ... N ) ) )
632, 62syl5bi 232 . . 3  |-  ( ( M  e.  ZZ  /\  L  e.  ZZ  /\  M  <_  L )  ->  ( N  e.  ( ZZ>= `  L )  ->  ( N  -  ( L  -  M ) )  e.  ( M ... N
) ) )
641, 63sylbi 207 . 2  |-  ( L  e.  ( ZZ>= `  M
)  ->  ( N  e.  ( ZZ>= `  L )  ->  ( N  -  ( L  -  M )
)  e.  ( M ... N ) ) )
6564imp 445 1  |-  ( ( L  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  L )
)  ->  ( N  -  ( L  -  M ) )  e.  ( M ... N
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    e. wcel 1990   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936    + caddc 9939    <_ cle 10075    - cmin 10266   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327
This theorem is referenced by:  uzsubsubfz1  12364
  Copyright terms: Public domain W3C validator