MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem7 Structured version   Visualization version   Unicode version

Theorem vdwlem7 15691
Description: Lemma for vdw 15698. (Contributed by Mario Carneiro, 12-Sep-2014.)
Hypotheses
Ref Expression
vdwlem3.v  |-  ( ph  ->  V  e.  NN )
vdwlem3.w  |-  ( ph  ->  W  e.  NN )
vdwlem4.r  |-  ( ph  ->  R  e.  Fin )
vdwlem4.h  |-  ( ph  ->  H : ( 1 ... ( W  x.  ( 2  x.  V
) ) ) --> R )
vdwlem4.f  |-  F  =  ( x  e.  ( 1 ... V ) 
|->  ( y  e.  ( 1 ... W ) 
|->  ( H `  (
y  +  ( W  x.  ( ( x  -  1 )  +  V ) ) ) ) ) )
vdwlem7.m  |-  ( ph  ->  M  e.  NN )
vdwlem7.g  |-  ( ph  ->  G : ( 1 ... W ) --> R )
vdwlem7.k  |-  ( ph  ->  K  e.  ( ZZ>= ` 
2 ) )
vdwlem7.a  |-  ( ph  ->  A  e.  NN )
vdwlem7.d  |-  ( ph  ->  D  e.  NN )
vdwlem7.s  |-  ( ph  ->  ( A (AP `  K ) D ) 
C_  ( `' F " { G } ) )
Assertion
Ref Expression
vdwlem7  |-  ( ph  ->  ( <. M ,  K >. PolyAP 
G  ->  ( <. ( M  +  1 ) ,  K >. PolyAP  H  \/  ( K  +  1
) MonoAP  G ) ) )
Distinct variable groups:    x, y, A    x, G, y    x, K, y    ph, x, y   
x, R, y    x, H, y    x, M, y   
x, D, y    x, W, y    x, V, y
Allowed substitution hints:    F( x, y)

Proof of Theorem vdwlem7
Dummy variables  k 
a  d  i  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 6678 . . 3  |-  ( 1 ... W )  e. 
_V
2 2nn0 11309 . . . 4  |-  2  e.  NN0
3 vdwlem7.k . . . 4  |-  ( ph  ->  K  e.  ( ZZ>= ` 
2 ) )
4 eluznn0 11757 . . . 4  |-  ( ( 2  e.  NN0  /\  K  e.  ( ZZ>= ` 
2 ) )  ->  K  e.  NN0 )
52, 3, 4sylancr 695 . . 3  |-  ( ph  ->  K  e.  NN0 )
6 vdwlem7.g . . 3  |-  ( ph  ->  G : ( 1 ... W ) --> R )
7 vdwlem7.m . . 3  |-  ( ph  ->  M  e.  NN )
8 eqid 2622 . . 3  |-  ( 1 ... M )  =  ( 1 ... M
)
91, 5, 6, 7, 8vdwpc 15684 . 2  |-  ( ph  ->  ( <. M ,  K >. PolyAP 
G  <->  E. a  e.  NN  E. d  e.  ( NN 
^m  ( 1 ... M ) ) ( A. i  e.  ( 1 ... M ) ( ( a  +  ( d `  i
) ) (AP `  K ) ( d `
 i ) ) 
C_  ( `' G " { ( G `  ( a  +  ( d `  i ) ) ) } )  /\  ( # `  ran  ( i  e.  ( 1 ... M ) 
|->  ( G `  (
a  +  ( d `
 i ) ) ) ) )  =  M ) ) )
10 vdwlem3.v . . . . . 6  |-  ( ph  ->  V  e.  NN )
1110ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  (
a  e.  NN  /\  d  e.  ( NN  ^m  ( 1 ... M
) ) ) )  /\  ( A. i  e.  ( 1 ... M
) ( ( a  +  ( d `  i ) ) (AP
`  K ) ( d `  i ) )  C_  ( `' G " { ( G `
 ( a  +  ( d `  i
) ) ) } )  /\  ( # `  ran  ( i  e.  ( 1 ... M
)  |->  ( G `  ( a  +  ( d `  i ) ) ) ) )  =  M ) )  ->  V  e.  NN )
12 vdwlem3.w . . . . . 6  |-  ( ph  ->  W  e.  NN )
1312ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  (
a  e.  NN  /\  d  e.  ( NN  ^m  ( 1 ... M
) ) ) )  /\  ( A. i  e.  ( 1 ... M
) ( ( a  +  ( d `  i ) ) (AP
`  K ) ( d `  i ) )  C_  ( `' G " { ( G `
 ( a  +  ( d `  i
) ) ) } )  /\  ( # `  ran  ( i  e.  ( 1 ... M
)  |->  ( G `  ( a  +  ( d `  i ) ) ) ) )  =  M ) )  ->  W  e.  NN )
14 vdwlem4.r . . . . . 6  |-  ( ph  ->  R  e.  Fin )
1514ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  (
a  e.  NN  /\  d  e.  ( NN  ^m  ( 1 ... M
) ) ) )  /\  ( A. i  e.  ( 1 ... M
) ( ( a  +  ( d `  i ) ) (AP
`  K ) ( d `  i ) )  C_  ( `' G " { ( G `
 ( a  +  ( d `  i
) ) ) } )  /\  ( # `  ran  ( i  e.  ( 1 ... M
)  |->  ( G `  ( a  +  ( d `  i ) ) ) ) )  =  M ) )  ->  R  e.  Fin )
16 vdwlem4.h . . . . . 6  |-  ( ph  ->  H : ( 1 ... ( W  x.  ( 2  x.  V
) ) ) --> R )
1716ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  (
a  e.  NN  /\  d  e.  ( NN  ^m  ( 1 ... M
) ) ) )  /\  ( A. i  e.  ( 1 ... M
) ( ( a  +  ( d `  i ) ) (AP
`  K ) ( d `  i ) )  C_  ( `' G " { ( G `
 ( a  +  ( d `  i
) ) ) } )  /\  ( # `  ran  ( i  e.  ( 1 ... M
)  |->  ( G `  ( a  +  ( d `  i ) ) ) ) )  =  M ) )  ->  H : ( 1 ... ( W  x.  ( 2  x.  V ) ) ) --> R )
18 vdwlem4.f . . . . 5  |-  F  =  ( x  e.  ( 1 ... V ) 
|->  ( y  e.  ( 1 ... W ) 
|->  ( H `  (
y  +  ( W  x.  ( ( x  -  1 )  +  V ) ) ) ) ) )
197ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  (
a  e.  NN  /\  d  e.  ( NN  ^m  ( 1 ... M
) ) ) )  /\  ( A. i  e.  ( 1 ... M
) ( ( a  +  ( d `  i ) ) (AP
`  K ) ( d `  i ) )  C_  ( `' G " { ( G `
 ( a  +  ( d `  i
) ) ) } )  /\  ( # `  ran  ( i  e.  ( 1 ... M
)  |->  ( G `  ( a  +  ( d `  i ) ) ) ) )  =  M ) )  ->  M  e.  NN )
206ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  (
a  e.  NN  /\  d  e.  ( NN  ^m  ( 1 ... M
) ) ) )  /\  ( A. i  e.  ( 1 ... M
) ( ( a  +  ( d `  i ) ) (AP
`  K ) ( d `  i ) )  C_  ( `' G " { ( G `
 ( a  +  ( d `  i
) ) ) } )  /\  ( # `  ran  ( i  e.  ( 1 ... M
)  |->  ( G `  ( a  +  ( d `  i ) ) ) ) )  =  M ) )  ->  G : ( 1 ... W ) --> R )
213ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  (
a  e.  NN  /\  d  e.  ( NN  ^m  ( 1 ... M
) ) ) )  /\  ( A. i  e.  ( 1 ... M
) ( ( a  +  ( d `  i ) ) (AP
`  K ) ( d `  i ) )  C_  ( `' G " { ( G `
 ( a  +  ( d `  i
) ) ) } )  /\  ( # `  ran  ( i  e.  ( 1 ... M
)  |->  ( G `  ( a  +  ( d `  i ) ) ) ) )  =  M ) )  ->  K  e.  (
ZZ>= `  2 ) )
22 vdwlem7.a . . . . . 6  |-  ( ph  ->  A  e.  NN )
2322ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  (
a  e.  NN  /\  d  e.  ( NN  ^m  ( 1 ... M
) ) ) )  /\  ( A. i  e.  ( 1 ... M
) ( ( a  +  ( d `  i ) ) (AP
`  K ) ( d `  i ) )  C_  ( `' G " { ( G `
 ( a  +  ( d `  i
) ) ) } )  /\  ( # `  ran  ( i  e.  ( 1 ... M
)  |->  ( G `  ( a  +  ( d `  i ) ) ) ) )  =  M ) )  ->  A  e.  NN )
24 vdwlem7.d . . . . . 6  |-  ( ph  ->  D  e.  NN )
2524ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  (
a  e.  NN  /\  d  e.  ( NN  ^m  ( 1 ... M
) ) ) )  /\  ( A. i  e.  ( 1 ... M
) ( ( a  +  ( d `  i ) ) (AP
`  K ) ( d `  i ) )  C_  ( `' G " { ( G `
 ( a  +  ( d `  i
) ) ) } )  /\  ( # `  ran  ( i  e.  ( 1 ... M
)  |->  ( G `  ( a  +  ( d `  i ) ) ) ) )  =  M ) )  ->  D  e.  NN )
26 vdwlem7.s . . . . . 6  |-  ( ph  ->  ( A (AP `  K ) D ) 
C_  ( `' F " { G } ) )
2726ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  (
a  e.  NN  /\  d  e.  ( NN  ^m  ( 1 ... M
) ) ) )  /\  ( A. i  e.  ( 1 ... M
) ( ( a  +  ( d `  i ) ) (AP
`  K ) ( d `  i ) )  C_  ( `' G " { ( G `
 ( a  +  ( d `  i
) ) ) } )  /\  ( # `  ran  ( i  e.  ( 1 ... M
)  |->  ( G `  ( a  +  ( d `  i ) ) ) ) )  =  M ) )  ->  ( A (AP
`  K ) D )  C_  ( `' F " { G }
) )
28 simplrl 800 . . . . 5  |-  ( ( ( ph  /\  (
a  e.  NN  /\  d  e.  ( NN  ^m  ( 1 ... M
) ) ) )  /\  ( A. i  e.  ( 1 ... M
) ( ( a  +  ( d `  i ) ) (AP
`  K ) ( d `  i ) )  C_  ( `' G " { ( G `
 ( a  +  ( d `  i
) ) ) } )  /\  ( # `  ran  ( i  e.  ( 1 ... M
)  |->  ( G `  ( a  +  ( d `  i ) ) ) ) )  =  M ) )  ->  a  e.  NN )
29 simplrr 801 . . . . . 6  |-  ( ( ( ph  /\  (
a  e.  NN  /\  d  e.  ( NN  ^m  ( 1 ... M
) ) ) )  /\  ( A. i  e.  ( 1 ... M
) ( ( a  +  ( d `  i ) ) (AP
`  K ) ( d `  i ) )  C_  ( `' G " { ( G `
 ( a  +  ( d `  i
) ) ) } )  /\  ( # `  ran  ( i  e.  ( 1 ... M
)  |->  ( G `  ( a  +  ( d `  i ) ) ) ) )  =  M ) )  ->  d  e.  ( NN  ^m  ( 1 ... M ) ) )
30 nnex 11026 . . . . . . 7  |-  NN  e.  _V
31 ovex 6678 . . . . . . 7  |-  ( 1 ... M )  e. 
_V
3230, 31elmap 7886 . . . . . 6  |-  ( d  e.  ( NN  ^m  ( 1 ... M
) )  <->  d :
( 1 ... M
) --> NN )
3329, 32sylib 208 . . . . 5  |-  ( ( ( ph  /\  (
a  e.  NN  /\  d  e.  ( NN  ^m  ( 1 ... M
) ) ) )  /\  ( A. i  e.  ( 1 ... M
) ( ( a  +  ( d `  i ) ) (AP
`  K ) ( d `  i ) )  C_  ( `' G " { ( G `
 ( a  +  ( d `  i
) ) ) } )  /\  ( # `  ran  ( i  e.  ( 1 ... M
)  |->  ( G `  ( a  +  ( d `  i ) ) ) ) )  =  M ) )  ->  d : ( 1 ... M ) --> NN )
34 simprl 794 . . . . . 6  |-  ( ( ( ph  /\  (
a  e.  NN  /\  d  e.  ( NN  ^m  ( 1 ... M
) ) ) )  /\  ( A. i  e.  ( 1 ... M
) ( ( a  +  ( d `  i ) ) (AP
`  K ) ( d `  i ) )  C_  ( `' G " { ( G `
 ( a  +  ( d `  i
) ) ) } )  /\  ( # `  ran  ( i  e.  ( 1 ... M
)  |->  ( G `  ( a  +  ( d `  i ) ) ) ) )  =  M ) )  ->  A. i  e.  ( 1 ... M ) ( ( a  +  ( d `  i
) ) (AP `  K ) ( d `
 i ) ) 
C_  ( `' G " { ( G `  ( a  +  ( d `  i ) ) ) } ) )
35 fveq2 6191 . . . . . . . . . 10  |-  ( i  =  k  ->  (
d `  i )  =  ( d `  k ) )
3635oveq2d 6666 . . . . . . . . 9  |-  ( i  =  k  ->  (
a  +  ( d `
 i ) )  =  ( a  +  ( d `  k
) ) )
3736, 35oveq12d 6668 . . . . . . . 8  |-  ( i  =  k  ->  (
( a  +  ( d `  i ) ) (AP `  K
) ( d `  i ) )  =  ( ( a  +  ( d `  k
) ) (AP `  K ) ( d `
 k ) ) )
3836fveq2d 6195 . . . . . . . . . 10  |-  ( i  =  k  ->  ( G `  ( a  +  ( d `  i ) ) )  =  ( G `  ( a  +  ( d `  k ) ) ) )
3938sneqd 4189 . . . . . . . . 9  |-  ( i  =  k  ->  { ( G `  ( a  +  ( d `  i ) ) ) }  =  { ( G `  ( a  +  ( d `  k ) ) ) } )
4039imaeq2d 5466 . . . . . . . 8  |-  ( i  =  k  ->  ( `' G " { ( G `  ( a  +  ( d `  i ) ) ) } )  =  ( `' G " { ( G `  ( a  +  ( d `  k ) ) ) } ) )
4137, 40sseq12d 3634 . . . . . . 7  |-  ( i  =  k  ->  (
( ( a  +  ( d `  i
) ) (AP `  K ) ( d `
 i ) ) 
C_  ( `' G " { ( G `  ( a  +  ( d `  i ) ) ) } )  <-> 
( ( a  +  ( d `  k
) ) (AP `  K ) ( d `
 k ) ) 
C_  ( `' G " { ( G `  ( a  +  ( d `  k ) ) ) } ) ) )
4241cbvralv 3171 . . . . . 6  |-  ( A. i  e.  ( 1 ... M ) ( ( a  +  ( d `  i ) ) (AP `  K
) ( d `  i ) )  C_  ( `' G " { ( G `  ( a  +  ( d `  i ) ) ) } )  <->  A. k  e.  ( 1 ... M
) ( ( a  +  ( d `  k ) ) (AP
`  K ) ( d `  k ) )  C_  ( `' G " { ( G `
 ( a  +  ( d `  k
) ) ) } ) )
4334, 42sylib 208 . . . . 5  |-  ( ( ( ph  /\  (
a  e.  NN  /\  d  e.  ( NN  ^m  ( 1 ... M
) ) ) )  /\  ( A. i  e.  ( 1 ... M
) ( ( a  +  ( d `  i ) ) (AP
`  K ) ( d `  i ) )  C_  ( `' G " { ( G `
 ( a  +  ( d `  i
) ) ) } )  /\  ( # `  ran  ( i  e.  ( 1 ... M
)  |->  ( G `  ( a  +  ( d `  i ) ) ) ) )  =  M ) )  ->  A. k  e.  ( 1 ... M ) ( ( a  +  ( d `  k
) ) (AP `  K ) ( d `
 k ) ) 
C_  ( `' G " { ( G `  ( a  +  ( d `  k ) ) ) } ) )
4438cbvmptv 4750 . . . . 5  |-  ( i  e.  ( 1 ... M )  |->  ( G `
 ( a  +  ( d `  i
) ) ) )  =  ( k  e.  ( 1 ... M
)  |->  ( G `  ( a  +  ( d `  k ) ) ) )
45 simprr 796 . . . . 5  |-  ( ( ( ph  /\  (
a  e.  NN  /\  d  e.  ( NN  ^m  ( 1 ... M
) ) ) )  /\  ( A. i  e.  ( 1 ... M
) ( ( a  +  ( d `  i ) ) (AP
`  K ) ( d `  i ) )  C_  ( `' G " { ( G `
 ( a  +  ( d `  i
) ) ) } )  /\  ( # `  ran  ( i  e.  ( 1 ... M
)  |->  ( G `  ( a  +  ( d `  i ) ) ) ) )  =  M ) )  ->  ( # `  ran  ( i  e.  ( 1 ... M ) 
|->  ( G `  (
a  +  ( d `
 i ) ) ) ) )  =  M )
46 eqid 2622 . . . . 5  |-  ( a  +  ( W  x.  ( ( A  +  ( V  -  D
) )  -  1 ) ) )  =  ( a  +  ( W  x.  ( ( A  +  ( V  -  D ) )  -  1 ) ) )
47 eqid 2622 . . . . 5  |-  ( j  e.  ( 1 ... ( M  +  1 ) )  |->  ( if ( j  =  ( M  +  1 ) ,  0 ,  ( d `  j ) )  +  ( W  x.  D ) ) )  =  ( j  e.  ( 1 ... ( M  +  1 ) )  |->  ( if ( j  =  ( M  +  1 ) ,  0 ,  ( d `  j ) )  +  ( W  x.  D ) ) )
4811, 13, 15, 17, 18, 19, 20, 21, 23, 25, 27, 28, 33, 43, 44, 45, 46, 47vdwlem6 15690 . . . 4  |-  ( ( ( ph  /\  (
a  e.  NN  /\  d  e.  ( NN  ^m  ( 1 ... M
) ) ) )  /\  ( A. i  e.  ( 1 ... M
) ( ( a  +  ( d `  i ) ) (AP
`  K ) ( d `  i ) )  C_  ( `' G " { ( G `
 ( a  +  ( d `  i
) ) ) } )  /\  ( # `  ran  ( i  e.  ( 1 ... M
)  |->  ( G `  ( a  +  ( d `  i ) ) ) ) )  =  M ) )  ->  ( <. ( M  +  1 ) ,  K >. PolyAP  H  \/  ( K  +  1
) MonoAP  G ) )
4948ex 450 . . 3  |-  ( (
ph  /\  ( a  e.  NN  /\  d  e.  ( NN  ^m  (
1 ... M ) ) ) )  ->  (
( A. i  e.  ( 1 ... M
) ( ( a  +  ( d `  i ) ) (AP
`  K ) ( d `  i ) )  C_  ( `' G " { ( G `
 ( a  +  ( d `  i
) ) ) } )  /\  ( # `  ran  ( i  e.  ( 1 ... M
)  |->  ( G `  ( a  +  ( d `  i ) ) ) ) )  =  M )  -> 
( <. ( M  + 
1 ) ,  K >. PolyAP 
H  \/  ( K  +  1 ) MonoAP  G
) ) )
5049rexlimdvva 3038 . 2  |-  ( ph  ->  ( E. a  e.  NN  E. d  e.  ( NN  ^m  (
1 ... M ) ) ( A. i  e.  ( 1 ... M
) ( ( a  +  ( d `  i ) ) (AP
`  K ) ( d `  i ) )  C_  ( `' G " { ( G `
 ( a  +  ( d `  i
) ) ) } )  /\  ( # `  ran  ( i  e.  ( 1 ... M
)  |->  ( G `  ( a  +  ( d `  i ) ) ) ) )  =  M )  -> 
( <. ( M  + 
1 ) ,  K >. PolyAP 
H  \/  ( K  +  1 ) MonoAP  G
) ) )
519, 50sylbid 230 1  |-  ( ph  ->  ( <. M ,  K >. PolyAP 
G  ->  ( <. ( M  +  1 ) ,  K >. PolyAP  H  \/  ( K  +  1
) MonoAP  G ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    C_ wss 3574   ifcif 4086   {csn 4177   <.cop 4183   class class class wbr 4653    |-> cmpt 4729   `'ccnv 5113   ran crn 5115   "cima 5117   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   Fincfn 7955   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    - cmin 10266   NNcn 11020   2c2 11070   NN0cn0 11292   ZZ>=cuz 11687   ...cfz 12326   #chash 13117  APcvdwa 15669   MonoAP cvdwm 15670   PolyAP cvdwp 15671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-hash 13118  df-vdwap 15672  df-vdwmc 15673  df-vdwpc 15674
This theorem is referenced by:  vdwlem9  15693
  Copyright terms: Public domain W3C validator