Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vtsval Structured version   Visualization version   Unicode version

Theorem vtsval 30715
Description: Value of the Vinogradov trigonometric sums (Contributed by Thierry Arnoux, 1-Dec-2021.)
Hypotheses
Ref Expression
vtsval.n  |-  ( ph  ->  N  e.  NN0 )
vtsval.x  |-  ( ph  ->  X  e.  CC )
vtsval.l  |-  ( ph  ->  L : NN --> CC )
Assertion
Ref Expression
vtsval  |-  ( ph  ->  ( ( Lvts N
) `  X )  =  sum_ a  e.  ( 1 ... N ) ( ( L `  a )  x.  ( exp `  ( ( _i  x.  ( 2  x.  pi ) )  x.  ( a  x.  X
) ) ) ) )
Distinct variable groups:    L, a    N, a    X, a
Allowed substitution hint:    ph( a)

Proof of Theorem vtsval
Dummy variables  l  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vtsval.l . . . 4  |-  ( ph  ->  L : NN --> CC )
2 cnex 10017 . . . . 5  |-  CC  e.  _V
3 nnex 11026 . . . . 5  |-  NN  e.  _V
42, 3elmap 7886 . . . 4  |-  ( L  e.  ( CC  ^m  NN )  <->  L : NN --> CC )
51, 4sylibr 224 . . 3  |-  ( ph  ->  L  e.  ( CC 
^m  NN ) )
6 vtsval.n . . 3  |-  ( ph  ->  N  e.  NN0 )
7 fveq1 6190 . . . . . . 7  |-  ( l  =  L  ->  (
l `  a )  =  ( L `  a ) )
87oveq1d 6665 . . . . . 6  |-  ( l  =  L  ->  (
( l `  a
)  x.  ( exp `  ( ( _i  x.  ( 2  x.  pi ) )  x.  (
a  x.  x ) ) ) )  =  ( ( L `  a )  x.  ( exp `  ( ( _i  x.  ( 2  x.  pi ) )  x.  ( a  x.  x
) ) ) ) )
98sumeq2sdv 14435 . . . . 5  |-  ( l  =  L  ->  sum_ a  e.  ( 1 ... n
) ( ( l `
 a )  x.  ( exp `  (
( _i  x.  (
2  x.  pi ) )  x.  ( a  x.  x ) ) ) )  =  sum_ a  e.  ( 1 ... n ) ( ( L `  a
)  x.  ( exp `  ( ( _i  x.  ( 2  x.  pi ) )  x.  (
a  x.  x ) ) ) ) )
109mpteq2dv 4745 . . . 4  |-  ( l  =  L  ->  (
x  e.  CC  |->  sum_ a  e.  ( 1 ... n ) ( ( l `  a
)  x.  ( exp `  ( ( _i  x.  ( 2  x.  pi ) )  x.  (
a  x.  x ) ) ) ) )  =  ( x  e.  CC  |->  sum_ a  e.  ( 1 ... n ) ( ( L `  a )  x.  ( exp `  ( ( _i  x.  ( 2  x.  pi ) )  x.  ( a  x.  x
) ) ) ) ) )
11 oveq2 6658 . . . . . 6  |-  ( n  =  N  ->  (
1 ... n )  =  ( 1 ... N
) )
1211sumeq1d 14431 . . . . 5  |-  ( n  =  N  ->  sum_ a  e.  ( 1 ... n
) ( ( L `
 a )  x.  ( exp `  (
( _i  x.  (
2  x.  pi ) )  x.  ( a  x.  x ) ) ) )  =  sum_ a  e.  ( 1 ... N ) ( ( L `  a
)  x.  ( exp `  ( ( _i  x.  ( 2  x.  pi ) )  x.  (
a  x.  x ) ) ) ) )
1312mpteq2dv 4745 . . . 4  |-  ( n  =  N  ->  (
x  e.  CC  |->  sum_ a  e.  ( 1 ... n ) ( ( L `  a
)  x.  ( exp `  ( ( _i  x.  ( 2  x.  pi ) )  x.  (
a  x.  x ) ) ) ) )  =  ( x  e.  CC  |->  sum_ a  e.  ( 1 ... N ) ( ( L `  a )  x.  ( exp `  ( ( _i  x.  ( 2  x.  pi ) )  x.  ( a  x.  x
) ) ) ) ) )
14 df-vts 30714 . . . 4  |- vts  =  ( l  e.  ( CC 
^m  NN ) ,  n  e.  NN0  |->  ( x  e.  CC  |->  sum_ a  e.  ( 1 ... n
) ( ( l `
 a )  x.  ( exp `  (
( _i  x.  (
2  x.  pi ) )  x.  ( a  x.  x ) ) ) ) ) )
152mptex 6486 . . . 4  |-  ( x  e.  CC  |->  sum_ a  e.  ( 1 ... N
) ( ( L `
 a )  x.  ( exp `  (
( _i  x.  (
2  x.  pi ) )  x.  ( a  x.  x ) ) ) ) )  e. 
_V
1610, 13, 14, 15ovmpt2 6796 . . 3  |-  ( ( L  e.  ( CC 
^m  NN )  /\  N  e.  NN0 )  -> 
( Lvts N )  =  ( x  e.  CC  |->  sum_ a  e.  ( 1 ... N ) ( ( L `  a )  x.  ( exp `  ( ( _i  x.  ( 2  x.  pi ) )  x.  ( a  x.  x
) ) ) ) ) )
175, 6, 16syl2anc 693 . 2  |-  ( ph  ->  ( Lvts N )  =  ( x  e.  CC  |->  sum_ a  e.  ( 1 ... N ) ( ( L `  a )  x.  ( exp `  ( ( _i  x.  ( 2  x.  pi ) )  x.  ( a  x.  x
) ) ) ) ) )
18 oveq2 6658 . . . . . . 7  |-  ( x  =  X  ->  (
a  x.  x )  =  ( a  x.  X ) )
1918oveq2d 6666 . . . . . 6  |-  ( x  =  X  ->  (
( _i  x.  (
2  x.  pi ) )  x.  ( a  x.  x ) )  =  ( ( _i  x.  ( 2  x.  pi ) )  x.  ( a  x.  X
) ) )
2019fveq2d 6195 . . . . 5  |-  ( x  =  X  ->  ( exp `  ( ( _i  x.  ( 2  x.  pi ) )  x.  ( a  x.  x
) ) )  =  ( exp `  (
( _i  x.  (
2  x.  pi ) )  x.  ( a  x.  X ) ) ) )
2120oveq2d 6666 . . . 4  |-  ( x  =  X  ->  (
( L `  a
)  x.  ( exp `  ( ( _i  x.  ( 2  x.  pi ) )  x.  (
a  x.  x ) ) ) )  =  ( ( L `  a )  x.  ( exp `  ( ( _i  x.  ( 2  x.  pi ) )  x.  ( a  x.  X
) ) ) ) )
2221sumeq2sdv 14435 . . 3  |-  ( x  =  X  ->  sum_ a  e.  ( 1 ... N
) ( ( L `
 a )  x.  ( exp `  (
( _i  x.  (
2  x.  pi ) )  x.  ( a  x.  x ) ) ) )  =  sum_ a  e.  ( 1 ... N ) ( ( L `  a
)  x.  ( exp `  ( ( _i  x.  ( 2  x.  pi ) )  x.  (
a  x.  X ) ) ) ) )
2322adantl 482 . 2  |-  ( (
ph  /\  x  =  X )  ->  sum_ a  e.  ( 1 ... N
) ( ( L `
 a )  x.  ( exp `  (
( _i  x.  (
2  x.  pi ) )  x.  ( a  x.  x ) ) ) )  =  sum_ a  e.  ( 1 ... N ) ( ( L `  a
)  x.  ( exp `  ( ( _i  x.  ( 2  x.  pi ) )  x.  (
a  x.  X ) ) ) ) )
24 vtsval.x . 2  |-  ( ph  ->  X  e.  CC )
25 sumex 14418 . . 3  |-  sum_ a  e.  ( 1 ... N
) ( ( L `
 a )  x.  ( exp `  (
( _i  x.  (
2  x.  pi ) )  x.  ( a  x.  X ) ) ) )  e.  _V
2625a1i 11 . 2  |-  ( ph  -> 
sum_ a  e.  ( 1 ... N ) ( ( L `  a )  x.  ( exp `  ( ( _i  x.  ( 2  x.  pi ) )  x.  ( a  x.  X
) ) ) )  e.  _V )
2717, 23, 24, 26fvmptd 6288 1  |-  ( ph  ->  ( ( Lvts N
) `  X )  =  sum_ a  e.  ( 1 ... N ) ( ( L `  a )  x.  ( exp `  ( ( _i  x.  ( 2  x.  pi ) )  x.  ( a  x.  X
) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   _Vcvv 3200    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   CCcc 9934   1c1 9937   _ici 9938    x. cmul 9941   NNcn 11020   2c2 11070   NN0cn0 11292   ...cfz 12326   sum_csu 14416   expce 14792   picpi 14797  vtscvts 30713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-sum 14417  df-vts 30714
This theorem is referenced by:  vtscl  30716  vtsprod  30717
  Copyright terms: Public domain W3C validator