MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wofib Structured version   Visualization version   Unicode version

Theorem wofib 8450
Description: The only sets which are well-ordered forwards and backwards are finite sets. (Contributed by Mario Carneiro, 30-Jan-2014.) (Revised by Mario Carneiro, 23-May-2015.)
Hypothesis
Ref Expression
wofib.1  |-  A  e. 
_V
Assertion
Ref Expression
wofib  |-  ( ( R  Or  A  /\  A  e.  Fin )  <->  ( R  We  A  /\  `' R  We  A
) )

Proof of Theorem wofib
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wofi 8209 . . 3  |-  ( ( R  Or  A  /\  A  e.  Fin )  ->  R  We  A )
2 cnvso 5674 . . . 4  |-  ( R  Or  A  <->  `' R  Or  A )
3 wofi 8209 . . . 4  |-  ( ( `' R  Or  A  /\  A  e.  Fin )  ->  `' R  We  A )
42, 3sylanb 489 . . 3  |-  ( ( R  Or  A  /\  A  e.  Fin )  ->  `' R  We  A
)
51, 4jca 554 . 2  |-  ( ( R  Or  A  /\  A  e.  Fin )  ->  ( R  We  A  /\  `' R  We  A
) )
6 weso 5105 . . . 4  |-  ( R  We  A  ->  R  Or  A )
76adantr 481 . . 3  |-  ( ( R  We  A  /\  `' R  We  A
)  ->  R  Or  A )
8 peano2 7086 . . . . . . . . 9  |-  ( y  e.  om  ->  suc  y  e.  om )
9 sucidg 5803 . . . . . . . . 9  |-  ( y  e.  om  ->  y  e.  suc  y )
10 vex 3203 . . . . . . . . . . . . 13  |-  z  e. 
_V
11 vex 3203 . . . . . . . . . . . . 13  |-  y  e. 
_V
1210, 11brcnv 5305 . . . . . . . . . . . 12  |-  ( z `'  _E  y  <->  y  _E  z )
13 epel 5032 . . . . . . . . . . . 12  |-  ( y  _E  z  <->  y  e.  z )
1412, 13bitri 264 . . . . . . . . . . 11  |-  ( z `'  _E  y  <->  y  e.  z )
15 eleq2 2690 . . . . . . . . . . 11  |-  ( z  =  suc  y  -> 
( y  e.  z  <-> 
y  e.  suc  y
) )
1614, 15syl5bb 272 . . . . . . . . . 10  |-  ( z  =  suc  y  -> 
( z `'  _E  y 
<->  y  e.  suc  y
) )
1716rspcev 3309 . . . . . . . . 9  |-  ( ( suc  y  e.  om  /\  y  e.  suc  y
)  ->  E. z  e.  om  z `'  _E  y )
188, 9, 17syl2anc 693 . . . . . . . 8  |-  ( y  e.  om  ->  E. z  e.  om  z `'  _E  y )
19 dfrex2 2996 . . . . . . . 8  |-  ( E. z  e.  om  z `'  _E  y  <->  -.  A. z  e.  om  -.  z `'  _E  y )
2018, 19sylib 208 . . . . . . 7  |-  ( y  e.  om  ->  -.  A. z  e.  om  -.  z `'  _E  y
)
2120nrex 3000 . . . . . 6  |-  -.  E. y  e.  om  A. z  e.  om  -.  z `'  _E  y
22 ordom 7074 . . . . . . . 8  |-  Ord  om
23 eqid 2622 . . . . . . . . 9  |- OrdIso ( R ,  A )  = OrdIso
( R ,  A
)
2423oicl 8434 . . . . . . . 8  |-  Ord  dom OrdIso ( R ,  A )
25 ordtri1 5756 . . . . . . . 8  |-  ( ( Ord  om  /\  Ord  dom OrdIso ( R ,  A ) )  ->  ( om  C_ 
dom OrdIso ( R ,  A
)  <->  -.  dom OrdIso ( R ,  A )  e. 
om ) )
2622, 24, 25mp2an 708 . . . . . . 7  |-  ( om  C_  dom OrdIso ( R ,  A )  <->  -.  dom OrdIso ( R ,  A )  e. 
om )
27 wofib.1 . . . . . . . . . . 11  |-  A  e. 
_V
2823oion 8441 . . . . . . . . . . 11  |-  ( A  e.  _V  ->  dom OrdIso ( R ,  A )  e.  On )
2927, 28mp1i 13 . . . . . . . . . 10  |-  ( ( ( R  We  A  /\  `' R  We  A
)  /\  om  C_  dom OrdIso ( R ,  A ) )  ->  dom OrdIso ( R ,  A )  e.  On )
30 simpr 477 . . . . . . . . . 10  |-  ( ( ( R  We  A  /\  `' R  We  A
)  /\  om  C_  dom OrdIso ( R ,  A ) )  ->  om  C_  dom OrdIso ( R ,  A ) )
3129, 30ssexd 4805 . . . . . . . . 9  |-  ( ( ( R  We  A  /\  `' R  We  A
)  /\  om  C_  dom OrdIso ( R ,  A ) )  ->  om  e.  _V )
3223oiiso 8442 . . . . . . . . . . . . 13  |-  ( ( A  e.  _V  /\  R  We  A )  -> OrdIso ( R ,  A
)  Isom  _E  ,  R  ( dom OrdIso ( R ,  A ) ,  A
) )
3327, 32mpan 706 . . . . . . . . . . . 12  |-  ( R  We  A  -> OrdIso ( R ,  A )  Isom  _E  ,  R  ( dom OrdIso ( R ,  A ) ,  A ) )
34 isocnv2 6581 . . . . . . . . . . . 12  |-  (OrdIso ( R ,  A )  Isom  _E  ,  R  ( dom OrdIso ( R ,  A ) ,  A
)  <-> OrdIso ( R ,  A
)  Isom  `'  _E  ,  `' R ( dom OrdIso ( R ,  A ) ,  A ) )
3533, 34sylib 208 . . . . . . . . . . 11  |-  ( R  We  A  -> OrdIso ( R ,  A )  Isom  `'  _E  ,  `' R
( dom OrdIso ( R ,  A ) ,  A
) )
36 wefr 5104 . . . . . . . . . . 11  |-  ( `' R  We  A  ->  `' R  Fr  A
)
37 isofr 6592 . . . . . . . . . . . 12  |-  (OrdIso ( R ,  A )  Isom  `'  _E  ,  `' R
( dom OrdIso ( R ,  A ) ,  A
)  ->  ( `'  _E  Fr  dom OrdIso ( R ,  A )  <->  `' R  Fr  A ) )
3837biimpar 502 . . . . . . . . . . 11  |-  ( (OrdIso ( R ,  A
)  Isom  `'  _E  ,  `' R ( dom OrdIso ( R ,  A ) ,  A )  /\  `' R  Fr  A )  ->  `'  _E  Fr  dom OrdIso ( R ,  A ) )
3935, 36, 38syl2an 494 . . . . . . . . . 10  |-  ( ( R  We  A  /\  `' R  We  A
)  ->  `'  _E  Fr  dom OrdIso ( R ,  A ) )
4039adantr 481 . . . . . . . . 9  |-  ( ( ( R  We  A  /\  `' R  We  A
)  /\  om  C_  dom OrdIso ( R ,  A ) )  ->  `'  _E  Fr  dom OrdIso ( R ,  A ) )
41 1onn 7719 . . . . . . . . . 10  |-  1o  e.  om
42 ne0i 3921 . . . . . . . . . 10  |-  ( 1o  e.  om  ->  om  =/=  (/) )
4341, 42mp1i 13 . . . . . . . . 9  |-  ( ( ( R  We  A  /\  `' R  We  A
)  /\  om  C_  dom OrdIso ( R ,  A ) )  ->  om  =/=  (/) )
44 fri 5076 . . . . . . . . 9  |-  ( ( ( om  e.  _V  /\  `'  _E  Fr  dom OrdIso ( R ,  A ) )  /\  ( om  C_  dom OrdIso ( R ,  A )  /\  om  =/=  (/) ) )  ->  E. y  e.  om  A. z  e.  om  -.  z `'  _E  y
)
4531, 40, 30, 43, 44syl22anc 1327 . . . . . . . 8  |-  ( ( ( R  We  A  /\  `' R  We  A
)  /\  om  C_  dom OrdIso ( R ,  A ) )  ->  E. y  e.  om  A. z  e. 
om  -.  z `'  _E  y )
4645ex 450 . . . . . . 7  |-  ( ( R  We  A  /\  `' R  We  A
)  ->  ( om  C_ 
dom OrdIso ( R ,  A
)  ->  E. y  e.  om  A. z  e. 
om  -.  z `'  _E  y ) )
4726, 46syl5bir 233 . . . . . 6  |-  ( ( R  We  A  /\  `' R  We  A
)  ->  ( -.  dom OrdIso ( R ,  A
)  e.  om  ->  E. y  e.  om  A. z  e.  om  -.  z `'  _E  y ) )
4821, 47mt3i 141 . . . . 5  |-  ( ( R  We  A  /\  `' R  We  A
)  ->  dom OrdIso ( R ,  A )  e. 
om )
49 ssid 3624 . . . . 5  |-  dom OrdIso ( R ,  A )  C_  dom OrdIso ( R ,  A
)
50 ssnnfi 8179 . . . . 5  |-  ( ( dom OrdIso ( R ,  A )  e.  om  /\ 
dom OrdIso ( R ,  A
)  C_  dom OrdIso ( R ,  A ) )  ->  dom OrdIso ( R ,  A )  e.  Fin )
5148, 49, 50sylancl 694 . . . 4  |-  ( ( R  We  A  /\  `' R  We  A
)  ->  dom OrdIso ( R ,  A )  e. 
Fin )
52 simpl 473 . . . . . 6  |-  ( ( R  We  A  /\  `' R  We  A
)  ->  R  We  A )
5323oien 8443 . . . . . 6  |-  ( ( A  e.  _V  /\  R  We  A )  ->  dom OrdIso ( R ,  A )  ~~  A
)
5427, 52, 53sylancr 695 . . . . 5  |-  ( ( R  We  A  /\  `' R  We  A
)  ->  dom OrdIso ( R ,  A )  ~~  A )
55 enfi 8176 . . . . 5  |-  ( dom OrdIso ( R ,  A ) 
~~  A  ->  ( dom OrdIso ( R ,  A
)  e.  Fin  <->  A  e.  Fin ) )
5654, 55syl 17 . . . 4  |-  ( ( R  We  A  /\  `' R  We  A
)  ->  ( dom OrdIso ( R ,  A )  e.  Fin  <->  A  e.  Fin ) )
5751, 56mpbid 222 . . 3  |-  ( ( R  We  A  /\  `' R  We  A
)  ->  A  e.  Fin )
587, 57jca 554 . 2  |-  ( ( R  We  A  /\  `' R  We  A
)  ->  ( R  Or  A  /\  A  e. 
Fin ) )
595, 58impbii 199 1  |-  ( ( R  Or  A  /\  A  e.  Fin )  <->  ( R  We  A  /\  `' R  We  A
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   (/)c0 3915   class class class wbr 4653    _E cep 5028    Or wor 5034    Fr wfr 5070    We wwe 5072   `'ccnv 5113   dom cdm 5114   Ord word 5722   Oncon0 5723   suc csuc 5725    Isom wiso 5889   omcom 7065   1oc1o 7553    ~~ cen 7952   Fincfn 7955  OrdIsocoi 8414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-om 7066  df-wrecs 7407  df-recs 7468  df-1o 7560  df-er 7742  df-en 7956  df-fin 7959  df-oi 8415
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator