MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2cshw Structured version   Visualization version   GIF version

Theorem 2cshw 13559
Description: Cyclically shifting a word two times. (Contributed by AV, 7-Apr-2018.) (Revised by AV, 4-Jun-2018.) (Revised by AV, 31-Oct-2018.)
Assertion
Ref Expression
2cshw ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑊 cyclShift 𝑀) cyclShift 𝑁) = (𝑊 cyclShift (𝑀 + 𝑁)))

Proof of Theorem 2cshw
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 cshwlen 13545 . . . . 5 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ) → (#‘(𝑊 cyclShift 𝑀)) = (#‘𝑊))
213adant3 1081 . . . 4 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (#‘(𝑊 cyclShift 𝑀)) = (#‘𝑊))
3 cshwcl 13544 . . . . . . 7 (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 𝑀) ∈ Word 𝑉)
43anim1i 592 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → ((𝑊 cyclShift 𝑀) ∈ Word 𝑉𝑁 ∈ ℤ))
543adant2 1080 . . . . 5 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑊 cyclShift 𝑀) ∈ Word 𝑉𝑁 ∈ ℤ))
6 cshwlen 13545 . . . . 5 (((𝑊 cyclShift 𝑀) ∈ Word 𝑉𝑁 ∈ ℤ) → (#‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)) = (#‘(𝑊 cyclShift 𝑀)))
75, 6syl 17 . . . 4 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (#‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)) = (#‘(𝑊 cyclShift 𝑀)))
8 simp1 1061 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑊 ∈ Word 𝑉)
9 zaddcl 11417 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ)
1093adant1 1079 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ)
118, 10jca 554 . . . . 5 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑊 ∈ Word 𝑉 ∧ (𝑀 + 𝑁) ∈ ℤ))
12 cshwlen 13545 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ (𝑀 + 𝑁) ∈ ℤ) → (#‘(𝑊 cyclShift (𝑀 + 𝑁))) = (#‘𝑊))
1311, 12syl 17 . . . 4 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (#‘(𝑊 cyclShift (𝑀 + 𝑁))) = (#‘𝑊))
142, 7, 133eqtr4d 2666 . . 3 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (#‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)) = (#‘(𝑊 cyclShift (𝑀 + 𝑁))))
157, 2eqtrd 2656 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (#‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)) = (#‘𝑊))
1615oveq2d 6666 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0..^(#‘((𝑊 cyclShift 𝑀) cyclShift 𝑁))) = (0..^(#‘𝑊)))
1716eleq2d 2687 . . . . 5 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑖 ∈ (0..^(#‘((𝑊 cyclShift 𝑀) cyclShift 𝑁))) ↔ 𝑖 ∈ (0..^(#‘𝑊))))
1833ad2ant1 1082 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑀) ∈ Word 𝑉)
1918adantr 481 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(#‘𝑊))) → (𝑊 cyclShift 𝑀) ∈ Word 𝑉)
20 simp3 1063 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
2120adantr 481 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(#‘𝑊))) → 𝑁 ∈ ℤ)
222eqcomd 2628 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (#‘𝑊) = (#‘(𝑊 cyclShift 𝑀)))
2322oveq2d 6666 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0..^(#‘𝑊)) = (0..^(#‘(𝑊 cyclShift 𝑀))))
2423eleq2d 2687 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑖 ∈ (0..^(#‘𝑊)) ↔ 𝑖 ∈ (0..^(#‘(𝑊 cyclShift 𝑀)))))
2524biimpa 501 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(#‘𝑊))) → 𝑖 ∈ (0..^(#‘(𝑊 cyclShift 𝑀))))
26 cshwidxmod 13549 . . . . . . . 8 (((𝑊 cyclShift 𝑀) ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(#‘(𝑊 cyclShift 𝑀)))) → (((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift 𝑀)‘((𝑖 + 𝑁) mod (#‘(𝑊 cyclShift 𝑀)))))
2719, 21, 25, 26syl3anc 1326 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(#‘𝑊))) → (((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift 𝑀)‘((𝑖 + 𝑁) mod (#‘(𝑊 cyclShift 𝑀)))))
288adantr 481 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(#‘𝑊))) → 𝑊 ∈ Word 𝑉)
29 simpl2 1065 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(#‘𝑊))) → 𝑀 ∈ ℤ)
30 elfzo0 12508 . . . . . . . . . . . 12 (𝑖 ∈ (0..^(#‘𝑊)) ↔ (𝑖 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ ∧ 𝑖 < (#‘𝑊)))
31 nn0z 11400 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ ℕ0𝑖 ∈ ℤ)
3231ad2antrr 762 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑖 ∈ ℤ)
3320adantl 482 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℤ)
3432, 33zaddcld 11486 . . . . . . . . . . . . . . 15 (((𝑖 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑖 + 𝑁) ∈ ℤ)
35 simpr 477 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ) → (#‘𝑊) ∈ ℕ)
3635adantr 481 . . . . . . . . . . . . . . 15 (((𝑖 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (#‘𝑊) ∈ ℕ)
3734, 36jca 554 . . . . . . . . . . . . . 14 (((𝑖 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑖 + 𝑁) ∈ ℤ ∧ (#‘𝑊) ∈ ℕ))
3837ex 450 . . . . . . . . . . . . 13 ((𝑖 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ) → ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑖 + 𝑁) ∈ ℤ ∧ (#‘𝑊) ∈ ℕ)))
39383adant3 1081 . . . . . . . . . . . 12 ((𝑖 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ ∧ 𝑖 < (#‘𝑊)) → ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑖 + 𝑁) ∈ ℤ ∧ (#‘𝑊) ∈ ℕ)))
4030, 39sylbi 207 . . . . . . . . . . 11 (𝑖 ∈ (0..^(#‘𝑊)) → ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑖 + 𝑁) ∈ ℤ ∧ (#‘𝑊) ∈ ℕ)))
4140impcom 446 . . . . . . . . . 10 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(#‘𝑊))) → ((𝑖 + 𝑁) ∈ ℤ ∧ (#‘𝑊) ∈ ℕ))
42 zmodfzo 12693 . . . . . . . . . 10 (((𝑖 + 𝑁) ∈ ℤ ∧ (#‘𝑊) ∈ ℕ) → ((𝑖 + 𝑁) mod (#‘𝑊)) ∈ (0..^(#‘𝑊)))
4341, 42syl 17 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(#‘𝑊))) → ((𝑖 + 𝑁) mod (#‘𝑊)) ∈ (0..^(#‘𝑊)))
442oveq2d 6666 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑖 + 𝑁) mod (#‘(𝑊 cyclShift 𝑀))) = ((𝑖 + 𝑁) mod (#‘𝑊)))
4544eleq1d 2686 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑖 + 𝑁) mod (#‘(𝑊 cyclShift 𝑀))) ∈ (0..^(#‘𝑊)) ↔ ((𝑖 + 𝑁) mod (#‘𝑊)) ∈ (0..^(#‘𝑊))))
4645adantr 481 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(#‘𝑊))) → (((𝑖 + 𝑁) mod (#‘(𝑊 cyclShift 𝑀))) ∈ (0..^(#‘𝑊)) ↔ ((𝑖 + 𝑁) mod (#‘𝑊)) ∈ (0..^(#‘𝑊))))
4743, 46mpbird 247 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(#‘𝑊))) → ((𝑖 + 𝑁) mod (#‘(𝑊 cyclShift 𝑀))) ∈ (0..^(#‘𝑊)))
48 cshwidxmod 13549 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ ((𝑖 + 𝑁) mod (#‘(𝑊 cyclShift 𝑀))) ∈ (0..^(#‘𝑊))) → ((𝑊 cyclShift 𝑀)‘((𝑖 + 𝑁) mod (#‘(𝑊 cyclShift 𝑀)))) = (𝑊‘((((𝑖 + 𝑁) mod (#‘(𝑊 cyclShift 𝑀))) + 𝑀) mod (#‘𝑊))))
4928, 29, 47, 48syl3anc 1326 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(#‘𝑊))) → ((𝑊 cyclShift 𝑀)‘((𝑖 + 𝑁) mod (#‘(𝑊 cyclShift 𝑀)))) = (𝑊‘((((𝑖 + 𝑁) mod (#‘(𝑊 cyclShift 𝑀))) + 𝑀) mod (#‘𝑊))))
50 nn0re 11301 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ ℕ0𝑖 ∈ ℝ)
5150ad2antrr 762 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑖 ∈ ℝ)
52 zre 11381 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
5352ad2antll 765 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℝ)
5451, 53readdcld 10069 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑖 + 𝑁) ∈ ℝ)
55 zre 11381 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
5655ad2antrl 764 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ∈ ℝ)
57 nnrp 11842 . . . . . . . . . . . . . . . . . . 19 ((#‘𝑊) ∈ ℕ → (#‘𝑊) ∈ ℝ+)
5857adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ) → (#‘𝑊) ∈ ℝ+)
5958adantr 481 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (#‘𝑊) ∈ ℝ+)
60 modaddmod 12709 . . . . . . . . . . . . . . . . 17 (((𝑖 + 𝑁) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (#‘𝑊) ∈ ℝ+) → ((((𝑖 + 𝑁) mod (#‘𝑊)) + 𝑀) mod (#‘𝑊)) = (((𝑖 + 𝑁) + 𝑀) mod (#‘𝑊)))
6154, 56, 59, 60syl3anc 1326 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((((𝑖 + 𝑁) mod (#‘𝑊)) + 𝑀) mod (#‘𝑊)) = (((𝑖 + 𝑁) + 𝑀) mod (#‘𝑊)))
62 nn0cn 11302 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ ℕ0𝑖 ∈ ℂ)
6362ad2antrr 762 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑖 ∈ ℂ)
64 zcn 11382 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
6564ad2antrl 764 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ∈ ℂ)
66 zcn 11382 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
6766ad2antll 765 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℂ)
68 add32r 10255 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑖 + (𝑀 + 𝑁)) = ((𝑖 + 𝑁) + 𝑀))
6963, 65, 67, 68syl3anc 1326 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑖 + (𝑀 + 𝑁)) = ((𝑖 + 𝑁) + 𝑀))
7069eqcomd 2628 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑖 + 𝑁) + 𝑀) = (𝑖 + (𝑀 + 𝑁)))
7170oveq1d 6665 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (((𝑖 + 𝑁) + 𝑀) mod (#‘𝑊)) = ((𝑖 + (𝑀 + 𝑁)) mod (#‘𝑊)))
7261, 71eqtrd 2656 . . . . . . . . . . . . . . 15 (((𝑖 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((((𝑖 + 𝑁) mod (#‘𝑊)) + 𝑀) mod (#‘𝑊)) = ((𝑖 + (𝑀 + 𝑁)) mod (#‘𝑊)))
7372ex 450 . . . . . . . . . . . . . 14 ((𝑖 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((((𝑖 + 𝑁) mod (#‘𝑊)) + 𝑀) mod (#‘𝑊)) = ((𝑖 + (𝑀 + 𝑁)) mod (#‘𝑊))))
74733adant3 1081 . . . . . . . . . . . . 13 ((𝑖 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ ∧ 𝑖 < (#‘𝑊)) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((((𝑖 + 𝑁) mod (#‘𝑊)) + 𝑀) mod (#‘𝑊)) = ((𝑖 + (𝑀 + 𝑁)) mod (#‘𝑊))))
7530, 74sylbi 207 . . . . . . . . . . . 12 (𝑖 ∈ (0..^(#‘𝑊)) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((((𝑖 + 𝑁) mod (#‘𝑊)) + 𝑀) mod (#‘𝑊)) = ((𝑖 + (𝑀 + 𝑁)) mod (#‘𝑊))))
7675com12 32 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑖 ∈ (0..^(#‘𝑊)) → ((((𝑖 + 𝑁) mod (#‘𝑊)) + 𝑀) mod (#‘𝑊)) = ((𝑖 + (𝑀 + 𝑁)) mod (#‘𝑊))))
77763adant1 1079 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑖 ∈ (0..^(#‘𝑊)) → ((((𝑖 + 𝑁) mod (#‘𝑊)) + 𝑀) mod (#‘𝑊)) = ((𝑖 + (𝑀 + 𝑁)) mod (#‘𝑊))))
7877imp 445 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(#‘𝑊))) → ((((𝑖 + 𝑁) mod (#‘𝑊)) + 𝑀) mod (#‘𝑊)) = ((𝑖 + (𝑀 + 𝑁)) mod (#‘𝑊)))
7978fveq2d 6195 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(#‘𝑊))) → (𝑊‘((((𝑖 + 𝑁) mod (#‘𝑊)) + 𝑀) mod (#‘𝑊))) = (𝑊‘((𝑖 + (𝑀 + 𝑁)) mod (#‘𝑊))))
802adantr 481 . . . . . . . . . . . 12 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(#‘𝑊))) → (#‘(𝑊 cyclShift 𝑀)) = (#‘𝑊))
8180oveq2d 6666 . . . . . . . . . . 11 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(#‘𝑊))) → ((𝑖 + 𝑁) mod (#‘(𝑊 cyclShift 𝑀))) = ((𝑖 + 𝑁) mod (#‘𝑊)))
8281oveq1d 6665 . . . . . . . . . 10 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(#‘𝑊))) → (((𝑖 + 𝑁) mod (#‘(𝑊 cyclShift 𝑀))) + 𝑀) = (((𝑖 + 𝑁) mod (#‘𝑊)) + 𝑀))
8382oveq1d 6665 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(#‘𝑊))) → ((((𝑖 + 𝑁) mod (#‘(𝑊 cyclShift 𝑀))) + 𝑀) mod (#‘𝑊)) = ((((𝑖 + 𝑁) mod (#‘𝑊)) + 𝑀) mod (#‘𝑊)))
8483fveq2d 6195 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(#‘𝑊))) → (𝑊‘((((𝑖 + 𝑁) mod (#‘(𝑊 cyclShift 𝑀))) + 𝑀) mod (#‘𝑊))) = (𝑊‘((((𝑖 + 𝑁) mod (#‘𝑊)) + 𝑀) mod (#‘𝑊))))
8510adantr 481 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(#‘𝑊))) → (𝑀 + 𝑁) ∈ ℤ)
86 simpr 477 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(#‘𝑊))) → 𝑖 ∈ (0..^(#‘𝑊)))
87 cshwidxmod 13549 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ (𝑀 + 𝑁) ∈ ℤ ∧ 𝑖 ∈ (0..^(#‘𝑊))) → ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖) = (𝑊‘((𝑖 + (𝑀 + 𝑁)) mod (#‘𝑊))))
8828, 85, 86, 87syl3anc 1326 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(#‘𝑊))) → ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖) = (𝑊‘((𝑖 + (𝑀 + 𝑁)) mod (#‘𝑊))))
8979, 84, 883eqtr4d 2666 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(#‘𝑊))) → (𝑊‘((((𝑖 + 𝑁) mod (#‘(𝑊 cyclShift 𝑀))) + 𝑀) mod (#‘𝑊))) = ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖))
9027, 49, 893eqtrd 2660 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(#‘𝑊))) → (((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖))
9190ex 450 . . . . 5 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑖 ∈ (0..^(#‘𝑊)) → (((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖)))
9217, 91sylbid 230 . . . 4 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑖 ∈ (0..^(#‘((𝑊 cyclShift 𝑀) cyclShift 𝑁))) → (((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖)))
9392ralrimiv 2965 . . 3 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∀𝑖 ∈ (0..^(#‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)))(((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖))
9414, 93jca 554 . 2 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((#‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)) = (#‘(𝑊 cyclShift (𝑀 + 𝑁))) ∧ ∀𝑖 ∈ (0..^(#‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)))(((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖)))
95 cshwcl 13544 . . . . . 6 ((𝑊 cyclShift 𝑀) ∈ Word 𝑉 → ((𝑊 cyclShift 𝑀) cyclShift 𝑁) ∈ Word 𝑉)
963, 95syl 17 . . . . 5 (𝑊 ∈ Word 𝑉 → ((𝑊 cyclShift 𝑀) cyclShift 𝑁) ∈ Word 𝑉)
97 cshwcl 13544 . . . . 5 (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift (𝑀 + 𝑁)) ∈ Word 𝑉)
9896, 97jca 554 . . . 4 (𝑊 ∈ Word 𝑉 → (((𝑊 cyclShift 𝑀) cyclShift 𝑁) ∈ Word 𝑉 ∧ (𝑊 cyclShift (𝑀 + 𝑁)) ∈ Word 𝑉))
99983ad2ant1 1082 . . 3 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑊 cyclShift 𝑀) cyclShift 𝑁) ∈ Word 𝑉 ∧ (𝑊 cyclShift (𝑀 + 𝑁)) ∈ Word 𝑉))
100 eqwrd 13346 . . 3 ((((𝑊 cyclShift 𝑀) cyclShift 𝑁) ∈ Word 𝑉 ∧ (𝑊 cyclShift (𝑀 + 𝑁)) ∈ Word 𝑉) → (((𝑊 cyclShift 𝑀) cyclShift 𝑁) = (𝑊 cyclShift (𝑀 + 𝑁)) ↔ ((#‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)) = (#‘(𝑊 cyclShift (𝑀 + 𝑁))) ∧ ∀𝑖 ∈ (0..^(#‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)))(((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖))))
10199, 100syl 17 . 2 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑊 cyclShift 𝑀) cyclShift 𝑁) = (𝑊 cyclShift (𝑀 + 𝑁)) ↔ ((#‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)) = (#‘(𝑊 cyclShift (𝑀 + 𝑁))) ∧ ∀𝑖 ∈ (0..^(#‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)))(((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖))))
10294, 101mpbird 247 1 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑊 cyclShift 𝑀) cyclShift 𝑁) = (𝑊 cyclShift (𝑀 + 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936   + caddc 9939   < clt 10074  cn 11020  0cn0 11292  cz 11377  +crp 11832  ..^cfzo 12465   mod cmo 12668  #chash 13117  Word cword 13291   cyclShift ccsh 13534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-hash 13118  df-word 13299  df-concat 13301  df-substr 13303  df-csh 13535
This theorem is referenced by:  2cshwid  13560  2cshwcom  13562  cshweqdif2  13565  2cshwcshw  13571  cshwcshid  13573  cshwcsh2id  13574  cshwshashlem2  15803
  Copyright terms: Public domain W3C validator