MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwlen Structured version   Visualization version   GIF version

Theorem cshwlen 13545
Description: The length of a cyclically shifted word is the same as the length of the original word. (Contributed by AV, 16-May-2018.) (Revised by AV, 20-May-2018.) (Revised by AV, 27-Oct-2018.)
Assertion
Ref Expression
cshwlen ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (#‘(𝑊 cyclShift 𝑁)) = (#‘𝑊))

Proof of Theorem cshwlen
StepHypRef Expression
1 oveq1 6657 . . . . 5 (𝑊 = ∅ → (𝑊 cyclShift 𝑁) = (∅ cyclShift 𝑁))
2 0csh0 13539 . . . . . 6 (∅ cyclShift 𝑁) = ∅
32a1i 11 . . . . 5 (𝑊 = ∅ → (∅ cyclShift 𝑁) = ∅)
4 eqcom 2629 . . . . . 6 (𝑊 = ∅ ↔ ∅ = 𝑊)
54biimpi 206 . . . . 5 (𝑊 = ∅ → ∅ = 𝑊)
61, 3, 53eqtrd 2660 . . . 4 (𝑊 = ∅ → (𝑊 cyclShift 𝑁) = 𝑊)
76fveq2d 6195 . . 3 (𝑊 = ∅ → (#‘(𝑊 cyclShift 𝑁)) = (#‘𝑊))
87a1d 25 . 2 (𝑊 = ∅ → ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (#‘(𝑊 cyclShift 𝑁)) = (#‘𝑊)))
9 cshword 13537 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = ((𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩) ++ (𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩)))
109fveq2d 6195 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (#‘(𝑊 cyclShift 𝑁)) = (#‘((𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩) ++ (𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩))))
1110adantr 481 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑊 ≠ ∅) → (#‘(𝑊 cyclShift 𝑁)) = (#‘((𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩) ++ (𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩))))
12 swrdcl 13419 . . . . . . 7 (𝑊 ∈ Word 𝑉 → (𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩) ∈ Word 𝑉)
13 swrdcl 13419 . . . . . . 7 (𝑊 ∈ Word 𝑉 → (𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩) ∈ Word 𝑉)
14 ccatlen 13360 . . . . . . 7 (((𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩) ∈ Word 𝑉 ∧ (𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩) ∈ Word 𝑉) → (#‘((𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩) ++ (𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩))) = ((#‘(𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩)) + (#‘(𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩))))
1512, 13, 14syl2anc 693 . . . . . 6 (𝑊 ∈ Word 𝑉 → (#‘((𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩) ++ (𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩))) = ((#‘(𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩)) + (#‘(𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩))))
1615adantr 481 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (#‘((𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩) ++ (𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩))) = ((#‘(𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩)) + (#‘(𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩))))
1716adantr 481 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑊 ≠ ∅) → (#‘((𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩) ++ (𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩))) = ((#‘(𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩)) + (#‘(𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩))))
18 lennncl 13325 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (#‘𝑊) ∈ ℕ)
19 pm3.21 464 . . . . . . . . . . 11 (((#‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑊 ∈ Word 𝑉 → (𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ))))
2019ex 450 . . . . . . . . . 10 ((#‘𝑊) ∈ ℕ → (𝑁 ∈ ℤ → (𝑊 ∈ Word 𝑉 → (𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)))))
2118, 20syl 17 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (𝑁 ∈ ℤ → (𝑊 ∈ Word 𝑉 → (𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)))))
2221ex 450 . . . . . . . 8 (𝑊 ∈ Word 𝑉 → (𝑊 ≠ ∅ → (𝑁 ∈ ℤ → (𝑊 ∈ Word 𝑉 → (𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ))))))
2322com24 95 . . . . . . 7 (𝑊 ∈ Word 𝑉 → (𝑊 ∈ Word 𝑉 → (𝑁 ∈ ℤ → (𝑊 ≠ ∅ → (𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ))))))
2423pm2.43i 52 . . . . . 6 (𝑊 ∈ Word 𝑉 → (𝑁 ∈ ℤ → (𝑊 ≠ ∅ → (𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)))))
2524imp31 448 . . . . 5 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑊 ≠ ∅) → (𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)))
26 simpl 473 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)) → 𝑊 ∈ Word 𝑉)
27 pm3.22 465 . . . . . . . . . 10 (((#‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ ℤ ∧ (#‘𝑊) ∈ ℕ))
2827adantl 482 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)) → (𝑁 ∈ ℤ ∧ (#‘𝑊) ∈ ℕ))
29 zmodfzp1 12694 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (#‘𝑊) ∈ ℕ) → (𝑁 mod (#‘𝑊)) ∈ (0...(#‘𝑊)))
3028, 29syl 17 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)) → (𝑁 mod (#‘𝑊)) ∈ (0...(#‘𝑊)))
31 lencl 13324 . . . . . . . . . 10 (𝑊 ∈ Word 𝑉 → (#‘𝑊) ∈ ℕ0)
32 nn0fz0 12437 . . . . . . . . . 10 ((#‘𝑊) ∈ ℕ0 ↔ (#‘𝑊) ∈ (0...(#‘𝑊)))
3331, 32sylib 208 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → (#‘𝑊) ∈ (0...(#‘𝑊)))
3433adantr 481 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)) → (#‘𝑊) ∈ (0...(#‘𝑊)))
35 swrdlen 13423 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ (𝑁 mod (#‘𝑊)) ∈ (0...(#‘𝑊)) ∧ (#‘𝑊) ∈ (0...(#‘𝑊))) → (#‘(𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩)) = ((#‘𝑊) − (𝑁 mod (#‘𝑊))))
3626, 30, 34, 35syl3anc 1326 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)) → (#‘(𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩)) = ((#‘𝑊) − (𝑁 mod (#‘𝑊))))
37 zmodcl 12690 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ (#‘𝑊) ∈ ℕ) → (𝑁 mod (#‘𝑊)) ∈ ℕ0)
3837ancoms 469 . . . . . . . . . 10 (((#‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑁 mod (#‘𝑊)) ∈ ℕ0)
3938adantl 482 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)) → (𝑁 mod (#‘𝑊)) ∈ ℕ0)
40 0elfz 12436 . . . . . . . . 9 ((𝑁 mod (#‘𝑊)) ∈ ℕ0 → 0 ∈ (0...(𝑁 mod (#‘𝑊))))
4139, 40syl 17 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)) → 0 ∈ (0...(𝑁 mod (#‘𝑊))))
42 swrdlen 13423 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ 0 ∈ (0...(𝑁 mod (#‘𝑊))) ∧ (𝑁 mod (#‘𝑊)) ∈ (0...(#‘𝑊))) → (#‘(𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩)) = ((𝑁 mod (#‘𝑊)) − 0))
4326, 41, 30, 42syl3anc 1326 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)) → (#‘(𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩)) = ((𝑁 mod (#‘𝑊)) − 0))
4436, 43oveq12d 6668 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)) → ((#‘(𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩)) + (#‘(𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩))) = (((#‘𝑊) − (𝑁 mod (#‘𝑊))) + ((𝑁 mod (#‘𝑊)) − 0)))
4537nn0cnd 11353 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (#‘𝑊) ∈ ℕ) → (𝑁 mod (#‘𝑊)) ∈ ℂ)
4645ancoms 469 . . . . . . . . 9 (((#‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑁 mod (#‘𝑊)) ∈ ℂ)
4746adantl 482 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)) → (𝑁 mod (#‘𝑊)) ∈ ℂ)
4847subid1d 10381 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)) → ((𝑁 mod (#‘𝑊)) − 0) = (𝑁 mod (#‘𝑊)))
4948oveq2d 6666 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)) → (((#‘𝑊) − (𝑁 mod (#‘𝑊))) + ((𝑁 mod (#‘𝑊)) − 0)) = (((#‘𝑊) − (𝑁 mod (#‘𝑊))) + (𝑁 mod (#‘𝑊))))
5031nn0cnd 11353 . . . . . . 7 (𝑊 ∈ Word 𝑉 → (#‘𝑊) ∈ ℂ)
51 npcan 10290 . . . . . . 7 (((#‘𝑊) ∈ ℂ ∧ (𝑁 mod (#‘𝑊)) ∈ ℂ) → (((#‘𝑊) − (𝑁 mod (#‘𝑊))) + (𝑁 mod (#‘𝑊))) = (#‘𝑊))
5250, 46, 51syl2an 494 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)) → (((#‘𝑊) − (𝑁 mod (#‘𝑊))) + (𝑁 mod (#‘𝑊))) = (#‘𝑊))
5344, 49, 523eqtrd 2660 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)) → ((#‘(𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩)) + (#‘(𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩))) = (#‘𝑊))
5425, 53syl 17 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑊 ≠ ∅) → ((#‘(𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩)) + (#‘(𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩))) = (#‘𝑊))
5511, 17, 543eqtrd 2660 . . 3 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑊 ≠ ∅) → (#‘(𝑊 cyclShift 𝑁)) = (#‘𝑊))
5655expcom 451 . 2 (𝑊 ≠ ∅ → ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (#‘(𝑊 cyclShift 𝑁)) = (#‘𝑊)))
578, 56pm2.61ine 2877 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (#‘(𝑊 cyclShift 𝑁)) = (#‘𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  c0 3915  cop 4183  cfv 5888  (class class class)co 6650  cc 9934  0cc0 9936   + caddc 9939  cmin 10266  cn 11020  0cn0 11292  cz 11377  ...cfz 12326   mod cmo 12668  #chash 13117  Word cword 13291   ++ cconcat 13293   substr csubstr 13295   cyclShift ccsh 13534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-hash 13118  df-word 13299  df-concat 13301  df-substr 13303  df-csh 13535
This theorem is referenced by:  cshwf  13546  2cshw  13559  lswcshw  13561  cshwleneq  13563  crctcshlem2  26710  clwwisshclwwslem  26927  clwwisshclwws  26928  clwwnisshclwwsn  26930  erclwwlkseqlen  26933  erclwwlksneqlen  26945  eucrct2eupth  27105
  Copyright terms: Public domain W3C validator