MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwcsh2id Structured version   Visualization version   GIF version

Theorem cshwcsh2id 13574
Description: A cyclically shifted word can be reconstructed by cyclically shifting it again twice. Lemma for erclwwlkstr 26936 and erclwwlksntr 26948. (Contributed by AV, 9-Apr-2018.) (Revised by AV, 11-Jun-2018.) (Proof shortened by AV, 3-Nov-2018.)
Hypotheses
Ref Expression
cshwcsh2id.1 (𝜑𝑧 ∈ Word 𝑉)
cshwcsh2id.2 (𝜑 → ((#‘𝑦) = (#‘𝑧) ∧ (#‘𝑥) = (#‘𝑦)))
Assertion
Ref Expression
cshwcsh2id (𝜑 → (((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...(#‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) → ∃𝑛 ∈ (0...(#‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))
Distinct variable group:   𝑘,𝑚,𝑛,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑘,𝑚,𝑛)   𝑉(𝑥,𝑦,𝑧,𝑘,𝑚,𝑛)

Proof of Theorem cshwcsh2id
StepHypRef Expression
1 oveq1 6657 . . . . . . . . 9 (𝑦 = (𝑧 cyclShift 𝑘) → (𝑦 cyclShift 𝑚) = ((𝑧 cyclShift 𝑘) cyclShift 𝑚))
21eqeq2d 2632 . . . . . . . 8 (𝑦 = (𝑧 cyclShift 𝑘) → (𝑥 = (𝑦 cyclShift 𝑚) ↔ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)))
32anbi2d 740 . . . . . . 7 (𝑦 = (𝑧 cyclShift 𝑘) → ((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ↔ (𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚))))
43adantr 481 . . . . . 6 ((𝑦 = (𝑧 cyclShift 𝑘) ∧ 𝑘 ∈ (0...(#‘𝑧))) → ((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ↔ (𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚))))
5 elfznn0 12433 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (0...(#‘𝑧)) → 𝑘 ∈ ℕ0)
6 elfznn0 12433 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (0...(#‘𝑦)) → 𝑚 ∈ ℕ0)
7 nn0addcl 11328 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ0𝑚 ∈ ℕ0) → (𝑘 + 𝑚) ∈ ℕ0)
85, 6, 7syl2anr 495 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑘 ∈ (0...(#‘𝑧))) → (𝑘 + 𝑚) ∈ ℕ0)
98adantr 481 . . . . . . . . . . . . . . 15 (((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑘 ∈ (0...(#‘𝑧))) ∧ ((𝑘 + 𝑚) ≤ (#‘𝑧) ∧ 𝜑)) → (𝑘 + 𝑚) ∈ ℕ0)
10 elfz3nn0 12434 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (0...(#‘𝑧)) → (#‘𝑧) ∈ ℕ0)
1110ad2antlr 763 . . . . . . . . . . . . . . 15 (((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑘 ∈ (0...(#‘𝑧))) ∧ ((𝑘 + 𝑚) ≤ (#‘𝑧) ∧ 𝜑)) → (#‘𝑧) ∈ ℕ0)
12 simprl 794 . . . . . . . . . . . . . . 15 (((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑘 ∈ (0...(#‘𝑧))) ∧ ((𝑘 + 𝑚) ≤ (#‘𝑧) ∧ 𝜑)) → (𝑘 + 𝑚) ≤ (#‘𝑧))
13 elfz2nn0 12431 . . . . . . . . . . . . . . 15 ((𝑘 + 𝑚) ∈ (0...(#‘𝑧)) ↔ ((𝑘 + 𝑚) ∈ ℕ0 ∧ (#‘𝑧) ∈ ℕ0 ∧ (𝑘 + 𝑚) ≤ (#‘𝑧)))
149, 11, 12, 13syl3anbrc 1246 . . . . . . . . . . . . . 14 (((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑘 ∈ (0...(#‘𝑧))) ∧ ((𝑘 + 𝑚) ≤ (#‘𝑧) ∧ 𝜑)) → (𝑘 + 𝑚) ∈ (0...(#‘𝑧)))
1514adantr 481 . . . . . . . . . . . . 13 ((((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑘 ∈ (0...(#‘𝑧))) ∧ ((𝑘 + 𝑚) ≤ (#‘𝑧) ∧ 𝜑)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)) → (𝑘 + 𝑚) ∈ (0...(#‘𝑧)))
16 cshwcsh2id.1 . . . . . . . . . . . . . . . . . 18 (𝜑𝑧 ∈ Word 𝑉)
1716adantl 482 . . . . . . . . . . . . . . . . 17 (((𝑘 + 𝑚) ≤ (#‘𝑧) ∧ 𝜑) → 𝑧 ∈ Word 𝑉)
1817adantl 482 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑘 ∈ (0...(#‘𝑧))) ∧ ((𝑘 + 𝑚) ≤ (#‘𝑧) ∧ 𝜑)) → 𝑧 ∈ Word 𝑉)
19 elfzelz 12342 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (0...(#‘𝑧)) → 𝑘 ∈ ℤ)
2019ad2antlr 763 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑘 ∈ (0...(#‘𝑧))) ∧ ((𝑘 + 𝑚) ≤ (#‘𝑧) ∧ 𝜑)) → 𝑘 ∈ ℤ)
21 elfzelz 12342 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (0...(#‘𝑦)) → 𝑚 ∈ ℤ)
2221adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑘 ∈ (0...(#‘𝑧))) → 𝑚 ∈ ℤ)
2322adantr 481 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑘 ∈ (0...(#‘𝑧))) ∧ ((𝑘 + 𝑚) ≤ (#‘𝑧) ∧ 𝜑)) → 𝑚 ∈ ℤ)
24 2cshw 13559 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ Word 𝑉𝑘 ∈ ℤ ∧ 𝑚 ∈ ℤ) → ((𝑧 cyclShift 𝑘) cyclShift 𝑚) = (𝑧 cyclShift (𝑘 + 𝑚)))
2518, 20, 23, 24syl3anc 1326 . . . . . . . . . . . . . . 15 (((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑘 ∈ (0...(#‘𝑧))) ∧ ((𝑘 + 𝑚) ≤ (#‘𝑧) ∧ 𝜑)) → ((𝑧 cyclShift 𝑘) cyclShift 𝑚) = (𝑧 cyclShift (𝑘 + 𝑚)))
2625eqeq2d 2632 . . . . . . . . . . . . . 14 (((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑘 ∈ (0...(#‘𝑧))) ∧ ((𝑘 + 𝑚) ≤ (#‘𝑧) ∧ 𝜑)) → (𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚) ↔ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚))))
2726biimpa 501 . . . . . . . . . . . . 13 ((((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑘 ∈ (0...(#‘𝑧))) ∧ ((𝑘 + 𝑚) ≤ (#‘𝑧) ∧ 𝜑)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)) → 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚)))
2815, 27jca 554 . . . . . . . . . . . 12 ((((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑘 ∈ (0...(#‘𝑧))) ∧ ((𝑘 + 𝑚) ≤ (#‘𝑧) ∧ 𝜑)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)) → ((𝑘 + 𝑚) ∈ (0...(#‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚))))
2928exp41 638 . . . . . . . . . . 11 (𝑚 ∈ (0...(#‘𝑦)) → (𝑘 ∈ (0...(#‘𝑧)) → (((𝑘 + 𝑚) ≤ (#‘𝑧) ∧ 𝜑) → (𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚) → ((𝑘 + 𝑚) ∈ (0...(#‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚)))))))
3029com23 86 . . . . . . . . . 10 (𝑚 ∈ (0...(#‘𝑦)) → (((𝑘 + 𝑚) ≤ (#‘𝑧) ∧ 𝜑) → (𝑘 ∈ (0...(#‘𝑧)) → (𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚) → ((𝑘 + 𝑚) ∈ (0...(#‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚)))))))
3130com24 95 . . . . . . . . 9 (𝑚 ∈ (0...(#‘𝑦)) → (𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚) → (𝑘 ∈ (0...(#‘𝑧)) → (((𝑘 + 𝑚) ≤ (#‘𝑧) ∧ 𝜑) → ((𝑘 + 𝑚) ∈ (0...(#‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚)))))))
3231imp 445 . . . . . . . 8 ((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)) → (𝑘 ∈ (0...(#‘𝑧)) → (((𝑘 + 𝑚) ≤ (#‘𝑧) ∧ 𝜑) → ((𝑘 + 𝑚) ∈ (0...(#‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚))))))
3332com12 32 . . . . . . 7 (𝑘 ∈ (0...(#‘𝑧)) → ((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)) → (((𝑘 + 𝑚) ≤ (#‘𝑧) ∧ 𝜑) → ((𝑘 + 𝑚) ∈ (0...(#‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚))))))
3433adantl 482 . . . . . 6 ((𝑦 = (𝑧 cyclShift 𝑘) ∧ 𝑘 ∈ (0...(#‘𝑧))) → ((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)) → (((𝑘 + 𝑚) ≤ (#‘𝑧) ∧ 𝜑) → ((𝑘 + 𝑚) ∈ (0...(#‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚))))))
354, 34sylbid 230 . . . . 5 ((𝑦 = (𝑧 cyclShift 𝑘) ∧ 𝑘 ∈ (0...(#‘𝑧))) → ((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → (((𝑘 + 𝑚) ≤ (#‘𝑧) ∧ 𝜑) → ((𝑘 + 𝑚) ∈ (0...(#‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚))))))
3635ancoms 469 . . . 4 ((𝑘 ∈ (0...(#‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘)) → ((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → (((𝑘 + 𝑚) ≤ (#‘𝑧) ∧ 𝜑) → ((𝑘 + 𝑚) ∈ (0...(#‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚))))))
3736impcom 446 . . 3 (((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...(#‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) → (((𝑘 + 𝑚) ≤ (#‘𝑧) ∧ 𝜑) → ((𝑘 + 𝑚) ∈ (0...(#‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚)))))
38 oveq2 6658 . . . . 5 (𝑛 = (𝑘 + 𝑚) → (𝑧 cyclShift 𝑛) = (𝑧 cyclShift (𝑘 + 𝑚)))
3938eqeq2d 2632 . . . 4 (𝑛 = (𝑘 + 𝑚) → (𝑥 = (𝑧 cyclShift 𝑛) ↔ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚))))
4039rspcev 3309 . . 3 (((𝑘 + 𝑚) ∈ (0...(#‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚))) → ∃𝑛 ∈ (0...(#‘𝑧))𝑥 = (𝑧 cyclShift 𝑛))
4137, 40syl6com 37 . 2 (((𝑘 + 𝑚) ≤ (#‘𝑧) ∧ 𝜑) → (((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...(#‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) → ∃𝑛 ∈ (0...(#‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))
42 elfz2 12333 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (0...(#‘𝑧)) ↔ ((0 ∈ ℤ ∧ (#‘𝑧) ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ (0 ≤ 𝑘𝑘 ≤ (#‘𝑧))))
43 nn0z 11400 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ ℕ0𝑚 ∈ ℤ)
44 zaddcl 11417 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑘 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑘 + 𝑚) ∈ ℤ)
4544ex 450 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑘 ∈ ℤ → (𝑚 ∈ ℤ → (𝑘 + 𝑚) ∈ ℤ))
4645adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((#‘𝑧) ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑚 ∈ ℤ → (𝑘 + 𝑚) ∈ ℤ))
4746impcom 446 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑚 ∈ ℤ ∧ ((#‘𝑧) ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑘 + 𝑚) ∈ ℤ)
48 simprl 794 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑚 ∈ ℤ ∧ ((#‘𝑧) ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (#‘𝑧) ∈ ℤ)
4947, 48zsubcld 11487 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑚 ∈ ℤ ∧ ((#‘𝑧) ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑘 + 𝑚) − (#‘𝑧)) ∈ ℤ)
5049ex 450 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ ℤ → (((#‘𝑧) ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑘 + 𝑚) − (#‘𝑧)) ∈ ℤ))
5143, 50syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 ∈ ℕ0 → (((#‘𝑧) ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑘 + 𝑚) − (#‘𝑧)) ∈ ℤ))
5251com12 32 . . . . . . . . . . . . . . . . . . . . 21 (((#‘𝑧) ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑚 ∈ ℕ0 → ((𝑘 + 𝑚) − (#‘𝑧)) ∈ ℤ))
53523adant1 1079 . . . . . . . . . . . . . . . . . . . 20 ((0 ∈ ℤ ∧ (#‘𝑧) ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑚 ∈ ℕ0 → ((𝑘 + 𝑚) − (#‘𝑧)) ∈ ℤ))
5453adantr 481 . . . . . . . . . . . . . . . . . . 19 (((0 ∈ ℤ ∧ (#‘𝑧) ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ (0 ≤ 𝑘𝑘 ≤ (#‘𝑧))) → (𝑚 ∈ ℕ0 → ((𝑘 + 𝑚) − (#‘𝑧)) ∈ ℤ))
5542, 54sylbi 207 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (0...(#‘𝑧)) → (𝑚 ∈ ℕ0 → ((𝑘 + 𝑚) − (#‘𝑧)) ∈ ℤ))
566, 55mpan9 486 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑘 ∈ (0...(#‘𝑧))) → ((𝑘 + 𝑚) − (#‘𝑧)) ∈ ℤ)
5756adantr 481 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑘 ∈ (0...(#‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (#‘𝑧) ∧ 𝜑)) → ((𝑘 + 𝑚) − (#‘𝑧)) ∈ ℤ)
58 elfz2nn0 12431 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (0...(#‘𝑧)) ↔ (𝑘 ∈ ℕ0 ∧ (#‘𝑧) ∈ ℕ0𝑘 ≤ (#‘𝑧)))
59 nn0re 11301 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
60 nn0re 11301 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((#‘𝑧) ∈ ℕ0 → (#‘𝑧) ∈ ℝ)
6159, 60anim12i 590 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑘 ∈ ℕ0 ∧ (#‘𝑧) ∈ ℕ0) → (𝑘 ∈ ℝ ∧ (#‘𝑧) ∈ ℝ))
62 nn0re 11301 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚 ∈ ℕ0𝑚 ∈ ℝ)
6361, 62anim12i 590 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑘 ∈ ℕ0 ∧ (#‘𝑧) ∈ ℕ0) ∧ 𝑚 ∈ ℕ0) → ((𝑘 ∈ ℝ ∧ (#‘𝑧) ∈ ℝ) ∧ 𝑚 ∈ ℝ))
64 simplr 792 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑘 ∈ ℝ ∧ (#‘𝑧) ∈ ℝ) ∧ 𝑚 ∈ ℝ) → (#‘𝑧) ∈ ℝ)
65 readdcl 10019 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑘 ∈ ℝ ∧ 𝑚 ∈ ℝ) → (𝑘 + 𝑚) ∈ ℝ)
6665adantlr 751 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑘 ∈ ℝ ∧ (#‘𝑧) ∈ ℝ) ∧ 𝑚 ∈ ℝ) → (𝑘 + 𝑚) ∈ ℝ)
6764, 66ltnled 10184 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑘 ∈ ℝ ∧ (#‘𝑧) ∈ ℝ) ∧ 𝑚 ∈ ℝ) → ((#‘𝑧) < (𝑘 + 𝑚) ↔ ¬ (𝑘 + 𝑚) ≤ (#‘𝑧)))
6864, 66posdifd 10614 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑘 ∈ ℝ ∧ (#‘𝑧) ∈ ℝ) ∧ 𝑚 ∈ ℝ) → ((#‘𝑧) < (𝑘 + 𝑚) ↔ 0 < ((𝑘 + 𝑚) − (#‘𝑧))))
6968biimpd 219 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑘 ∈ ℝ ∧ (#‘𝑧) ∈ ℝ) ∧ 𝑚 ∈ ℝ) → ((#‘𝑧) < (𝑘 + 𝑚) → 0 < ((𝑘 + 𝑚) − (#‘𝑧))))
7067, 69sylbird 250 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑘 ∈ ℝ ∧ (#‘𝑧) ∈ ℝ) ∧ 𝑚 ∈ ℝ) → (¬ (𝑘 + 𝑚) ≤ (#‘𝑧) → 0 < ((𝑘 + 𝑚) − (#‘𝑧))))
7163, 70syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑘 ∈ ℕ0 ∧ (#‘𝑧) ∈ ℕ0) ∧ 𝑚 ∈ ℕ0) → (¬ (𝑘 + 𝑚) ≤ (#‘𝑧) → 0 < ((𝑘 + 𝑚) − (#‘𝑧))))
7271ex 450 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 ∈ ℕ0 ∧ (#‘𝑧) ∈ ℕ0) → (𝑚 ∈ ℕ0 → (¬ (𝑘 + 𝑚) ≤ (#‘𝑧) → 0 < ((𝑘 + 𝑚) − (#‘𝑧)))))
73723adant3 1081 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ0 ∧ (#‘𝑧) ∈ ℕ0𝑘 ≤ (#‘𝑧)) → (𝑚 ∈ ℕ0 → (¬ (𝑘 + 𝑚) ≤ (#‘𝑧) → 0 < ((𝑘 + 𝑚) − (#‘𝑧)))))
7458, 73sylbi 207 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (0...(#‘𝑧)) → (𝑚 ∈ ℕ0 → (¬ (𝑘 + 𝑚) ≤ (#‘𝑧) → 0 < ((𝑘 + 𝑚) − (#‘𝑧)))))
756, 74mpan9 486 . . . . . . . . . . . . . . . . . . 19 ((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑘 ∈ (0...(#‘𝑧))) → (¬ (𝑘 + 𝑚) ≤ (#‘𝑧) → 0 < ((𝑘 + 𝑚) − (#‘𝑧))))
7675com12 32 . . . . . . . . . . . . . . . . . 18 (¬ (𝑘 + 𝑚) ≤ (#‘𝑧) → ((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑘 ∈ (0...(#‘𝑧))) → 0 < ((𝑘 + 𝑚) − (#‘𝑧))))
7776adantr 481 . . . . . . . . . . . . . . . . 17 ((¬ (𝑘 + 𝑚) ≤ (#‘𝑧) ∧ 𝜑) → ((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑘 ∈ (0...(#‘𝑧))) → 0 < ((𝑘 + 𝑚) − (#‘𝑧))))
7877impcom 446 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑘 ∈ (0...(#‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (#‘𝑧) ∧ 𝜑)) → 0 < ((𝑘 + 𝑚) − (#‘𝑧)))
79 elnnz 11387 . . . . . . . . . . . . . . . 16 (((𝑘 + 𝑚) − (#‘𝑧)) ∈ ℕ ↔ (((𝑘 + 𝑚) − (#‘𝑧)) ∈ ℤ ∧ 0 < ((𝑘 + 𝑚) − (#‘𝑧))))
8057, 78, 79sylanbrc 698 . . . . . . . . . . . . . . 15 (((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑘 ∈ (0...(#‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (#‘𝑧) ∧ 𝜑)) → ((𝑘 + 𝑚) − (#‘𝑧)) ∈ ℕ)
8180nnnn0d 11351 . . . . . . . . . . . . . 14 (((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑘 ∈ (0...(#‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (#‘𝑧) ∧ 𝜑)) → ((𝑘 + 𝑚) − (#‘𝑧)) ∈ ℕ0)
8210ad2antlr 763 . . . . . . . . . . . . . 14 (((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑘 ∈ (0...(#‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (#‘𝑧) ∧ 𝜑)) → (#‘𝑧) ∈ ℕ0)
83 cshwcsh2id.2 . . . . . . . . . . . . . . . . 17 (𝜑 → ((#‘𝑦) = (#‘𝑧) ∧ (#‘𝑥) = (#‘𝑦)))
84 oveq2 6658 . . . . . . . . . . . . . . . . . . . . 21 ((#‘𝑦) = (#‘𝑧) → (0...(#‘𝑦)) = (0...(#‘𝑧)))
8584eleq2d 2687 . . . . . . . . . . . . . . . . . . . 20 ((#‘𝑦) = (#‘𝑧) → (𝑚 ∈ (0...(#‘𝑦)) ↔ 𝑚 ∈ (0...(#‘𝑧))))
8685anbi1d 741 . . . . . . . . . . . . . . . . . . 19 ((#‘𝑦) = (#‘𝑧) → ((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑘 ∈ (0...(#‘𝑧))) ↔ (𝑚 ∈ (0...(#‘𝑧)) ∧ 𝑘 ∈ (0...(#‘𝑧)))))
87 elfz2nn0 12431 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ (0...(#‘𝑧)) ↔ (𝑚 ∈ ℕ0 ∧ (#‘𝑧) ∈ ℕ0𝑚 ≤ (#‘𝑧)))
8859adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑘 ∈ ℕ0 ∧ (#‘𝑧) ∈ ℕ0) → 𝑘 ∈ ℝ)
8988, 62anim12i 590 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑘 ∈ ℕ0 ∧ (#‘𝑧) ∈ ℕ0) ∧ 𝑚 ∈ ℕ0) → (𝑘 ∈ ℝ ∧ 𝑚 ∈ ℝ))
9060, 60jca 554 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((#‘𝑧) ∈ ℕ0 → ((#‘𝑧) ∈ ℝ ∧ (#‘𝑧) ∈ ℝ))
9190ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑘 ∈ ℕ0 ∧ (#‘𝑧) ∈ ℕ0) ∧ 𝑚 ∈ ℕ0) → ((#‘𝑧) ∈ ℝ ∧ (#‘𝑧) ∈ ℝ))
92 le2add 10510 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑘 ∈ ℝ ∧ 𝑚 ∈ ℝ) ∧ ((#‘𝑧) ∈ ℝ ∧ (#‘𝑧) ∈ ℝ)) → ((𝑘 ≤ (#‘𝑧) ∧ 𝑚 ≤ (#‘𝑧)) → (𝑘 + 𝑚) ≤ ((#‘𝑧) + (#‘𝑧))))
9389, 91, 92syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑘 ∈ ℕ0 ∧ (#‘𝑧) ∈ ℕ0) ∧ 𝑚 ∈ ℕ0) → ((𝑘 ≤ (#‘𝑧) ∧ 𝑚 ≤ (#‘𝑧)) → (𝑘 + 𝑚) ≤ ((#‘𝑧) + (#‘𝑧))))
94 nn0readdcl 11357 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑘 ∈ ℕ0𝑚 ∈ ℕ0) → (𝑘 + 𝑚) ∈ ℝ)
9594adantlr 751 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑘 ∈ ℕ0 ∧ (#‘𝑧) ∈ ℕ0) ∧ 𝑚 ∈ ℕ0) → (𝑘 + 𝑚) ∈ ℝ)
9660ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑘 ∈ ℕ0 ∧ (#‘𝑧) ∈ ℕ0) ∧ 𝑚 ∈ ℕ0) → (#‘𝑧) ∈ ℝ)
9795, 96, 96lesubadd2d 10626 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑘 ∈ ℕ0 ∧ (#‘𝑧) ∈ ℕ0) ∧ 𝑚 ∈ ℕ0) → (((𝑘 + 𝑚) − (#‘𝑧)) ≤ (#‘𝑧) ↔ (𝑘 + 𝑚) ≤ ((#‘𝑧) + (#‘𝑧))))
9893, 97sylibrd 249 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑘 ∈ ℕ0 ∧ (#‘𝑧) ∈ ℕ0) ∧ 𝑚 ∈ ℕ0) → ((𝑘 ≤ (#‘𝑧) ∧ 𝑚 ≤ (#‘𝑧)) → ((𝑘 + 𝑚) − (#‘𝑧)) ≤ (#‘𝑧)))
9998expcomd 454 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑘 ∈ ℕ0 ∧ (#‘𝑧) ∈ ℕ0) ∧ 𝑚 ∈ ℕ0) → (𝑚 ≤ (#‘𝑧) → (𝑘 ≤ (#‘𝑧) → ((𝑘 + 𝑚) − (#‘𝑧)) ≤ (#‘𝑧))))
10099ex 450 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑘 ∈ ℕ0 ∧ (#‘𝑧) ∈ ℕ0) → (𝑚 ∈ ℕ0 → (𝑚 ≤ (#‘𝑧) → (𝑘 ≤ (#‘𝑧) → ((𝑘 + 𝑚) − (#‘𝑧)) ≤ (#‘𝑧)))))
101100com24 95 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑘 ∈ ℕ0 ∧ (#‘𝑧) ∈ ℕ0) → (𝑘 ≤ (#‘𝑧) → (𝑚 ≤ (#‘𝑧) → (𝑚 ∈ ℕ0 → ((𝑘 + 𝑚) − (#‘𝑧)) ≤ (#‘𝑧)))))
1021013impia 1261 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑘 ∈ ℕ0 ∧ (#‘𝑧) ∈ ℕ0𝑘 ≤ (#‘𝑧)) → (𝑚 ≤ (#‘𝑧) → (𝑚 ∈ ℕ0 → ((𝑘 + 𝑚) − (#‘𝑧)) ≤ (#‘𝑧))))
103102com13 88 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 ∈ ℕ0 → (𝑚 ≤ (#‘𝑧) → ((𝑘 ∈ ℕ0 ∧ (#‘𝑧) ∈ ℕ0𝑘 ≤ (#‘𝑧)) → ((𝑘 + 𝑚) − (#‘𝑧)) ≤ (#‘𝑧))))
104103imp 445 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚 ∈ ℕ0𝑚 ≤ (#‘𝑧)) → ((𝑘 ∈ ℕ0 ∧ (#‘𝑧) ∈ ℕ0𝑘 ≤ (#‘𝑧)) → ((𝑘 + 𝑚) − (#‘𝑧)) ≤ (#‘𝑧)))
10558, 104syl5bi 232 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑚 ∈ ℕ0𝑚 ≤ (#‘𝑧)) → (𝑘 ∈ (0...(#‘𝑧)) → ((𝑘 + 𝑚) − (#‘𝑧)) ≤ (#‘𝑧)))
1061053adant2 1080 . . . . . . . . . . . . . . . . . . . . 21 ((𝑚 ∈ ℕ0 ∧ (#‘𝑧) ∈ ℕ0𝑚 ≤ (#‘𝑧)) → (𝑘 ∈ (0...(#‘𝑧)) → ((𝑘 + 𝑚) − (#‘𝑧)) ≤ (#‘𝑧)))
10787, 106sylbi 207 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ (0...(#‘𝑧)) → (𝑘 ∈ (0...(#‘𝑧)) → ((𝑘 + 𝑚) − (#‘𝑧)) ≤ (#‘𝑧)))
108107imp 445 . . . . . . . . . . . . . . . . . . 19 ((𝑚 ∈ (0...(#‘𝑧)) ∧ 𝑘 ∈ (0...(#‘𝑧))) → ((𝑘 + 𝑚) − (#‘𝑧)) ≤ (#‘𝑧))
10986, 108syl6bi 243 . . . . . . . . . . . . . . . . . 18 ((#‘𝑦) = (#‘𝑧) → ((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑘 ∈ (0...(#‘𝑧))) → ((𝑘 + 𝑚) − (#‘𝑧)) ≤ (#‘𝑧)))
110109adantr 481 . . . . . . . . . . . . . . . . 17 (((#‘𝑦) = (#‘𝑧) ∧ (#‘𝑥) = (#‘𝑦)) → ((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑘 ∈ (0...(#‘𝑧))) → ((𝑘 + 𝑚) − (#‘𝑧)) ≤ (#‘𝑧)))
11183, 110syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑘 ∈ (0...(#‘𝑧))) → ((𝑘 + 𝑚) − (#‘𝑧)) ≤ (#‘𝑧)))
112111adantl 482 . . . . . . . . . . . . . . 15 ((¬ (𝑘 + 𝑚) ≤ (#‘𝑧) ∧ 𝜑) → ((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑘 ∈ (0...(#‘𝑧))) → ((𝑘 + 𝑚) − (#‘𝑧)) ≤ (#‘𝑧)))
113112impcom 446 . . . . . . . . . . . . . 14 (((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑘 ∈ (0...(#‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (#‘𝑧) ∧ 𝜑)) → ((𝑘 + 𝑚) − (#‘𝑧)) ≤ (#‘𝑧))
114 elfz2nn0 12431 . . . . . . . . . . . . . 14 (((𝑘 + 𝑚) − (#‘𝑧)) ∈ (0...(#‘𝑧)) ↔ (((𝑘 + 𝑚) − (#‘𝑧)) ∈ ℕ0 ∧ (#‘𝑧) ∈ ℕ0 ∧ ((𝑘 + 𝑚) − (#‘𝑧)) ≤ (#‘𝑧)))
11581, 82, 113, 114syl3anbrc 1246 . . . . . . . . . . . . 13 (((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑘 ∈ (0...(#‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (#‘𝑧) ∧ 𝜑)) → ((𝑘 + 𝑚) − (#‘𝑧)) ∈ (0...(#‘𝑧)))
116115adantr 481 . . . . . . . . . . . 12 ((((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑘 ∈ (0...(#‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (#‘𝑧) ∧ 𝜑)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)) → ((𝑘 + 𝑚) − (#‘𝑧)) ∈ (0...(#‘𝑧)))
11716adantl 482 . . . . . . . . . . . . . . . . 17 ((¬ (𝑘 + 𝑚) ≤ (#‘𝑧) ∧ 𝜑) → 𝑧 ∈ Word 𝑉)
118117adantl 482 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑘 ∈ (0...(#‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (#‘𝑧) ∧ 𝜑)) → 𝑧 ∈ Word 𝑉)
11919ad2antlr 763 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑘 ∈ (0...(#‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (#‘𝑧) ∧ 𝜑)) → 𝑘 ∈ ℤ)
12022adantr 481 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑘 ∈ (0...(#‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (#‘𝑧) ∧ 𝜑)) → 𝑚 ∈ ℤ)
121118, 119, 120, 24syl3anc 1326 . . . . . . . . . . . . . . 15 (((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑘 ∈ (0...(#‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (#‘𝑧) ∧ 𝜑)) → ((𝑧 cyclShift 𝑘) cyclShift 𝑚) = (𝑧 cyclShift (𝑘 + 𝑚)))
12219, 21, 44syl2anr 495 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑘 ∈ (0...(#‘𝑧))) → (𝑘 + 𝑚) ∈ ℤ)
123 cshwsublen 13542 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ Word 𝑉 ∧ (𝑘 + 𝑚) ∈ ℤ) → (𝑧 cyclShift (𝑘 + 𝑚)) = (𝑧 cyclShift ((𝑘 + 𝑚) − (#‘𝑧))))
124117, 122, 123syl2anr 495 . . . . . . . . . . . . . . 15 (((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑘 ∈ (0...(#‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (#‘𝑧) ∧ 𝜑)) → (𝑧 cyclShift (𝑘 + 𝑚)) = (𝑧 cyclShift ((𝑘 + 𝑚) − (#‘𝑧))))
125121, 124eqtrd 2656 . . . . . . . . . . . . . 14 (((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑘 ∈ (0...(#‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (#‘𝑧) ∧ 𝜑)) → ((𝑧 cyclShift 𝑘) cyclShift 𝑚) = (𝑧 cyclShift ((𝑘 + 𝑚) − (#‘𝑧))))
126125eqeq2d 2632 . . . . . . . . . . . . 13 (((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑘 ∈ (0...(#‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (#‘𝑧) ∧ 𝜑)) → (𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚) ↔ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (#‘𝑧)))))
127126biimpa 501 . . . . . . . . . . . 12 ((((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑘 ∈ (0...(#‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (#‘𝑧) ∧ 𝜑)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)) → 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (#‘𝑧))))
128116, 127jca 554 . . . . . . . . . . 11 ((((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑘 ∈ (0...(#‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (#‘𝑧) ∧ 𝜑)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)) → (((𝑘 + 𝑚) − (#‘𝑧)) ∈ (0...(#‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (#‘𝑧)))))
129128exp41 638 . . . . . . . . . 10 (𝑚 ∈ (0...(#‘𝑦)) → (𝑘 ∈ (0...(#‘𝑧)) → ((¬ (𝑘 + 𝑚) ≤ (#‘𝑧) ∧ 𝜑) → (𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚) → (((𝑘 + 𝑚) − (#‘𝑧)) ∈ (0...(#‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (#‘𝑧))))))))
130129com23 86 . . . . . . . . 9 (𝑚 ∈ (0...(#‘𝑦)) → ((¬ (𝑘 + 𝑚) ≤ (#‘𝑧) ∧ 𝜑) → (𝑘 ∈ (0...(#‘𝑧)) → (𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚) → (((𝑘 + 𝑚) − (#‘𝑧)) ∈ (0...(#‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (#‘𝑧))))))))
131130com24 95 . . . . . . . 8 (𝑚 ∈ (0...(#‘𝑦)) → (𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚) → (𝑘 ∈ (0...(#‘𝑧)) → ((¬ (𝑘 + 𝑚) ≤ (#‘𝑧) ∧ 𝜑) → (((𝑘 + 𝑚) − (#‘𝑧)) ∈ (0...(#‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (#‘𝑧))))))))
132131imp 445 . . . . . . 7 ((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)) → (𝑘 ∈ (0...(#‘𝑧)) → ((¬ (𝑘 + 𝑚) ≤ (#‘𝑧) ∧ 𝜑) → (((𝑘 + 𝑚) − (#‘𝑧)) ∈ (0...(#‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (#‘𝑧)))))))
1333, 132syl6bi 243 . . . . . 6 (𝑦 = (𝑧 cyclShift 𝑘) → ((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → (𝑘 ∈ (0...(#‘𝑧)) → ((¬ (𝑘 + 𝑚) ≤ (#‘𝑧) ∧ 𝜑) → (((𝑘 + 𝑚) − (#‘𝑧)) ∈ (0...(#‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (#‘𝑧))))))))
134133com23 86 . . . . 5 (𝑦 = (𝑧 cyclShift 𝑘) → (𝑘 ∈ (0...(#‘𝑧)) → ((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → ((¬ (𝑘 + 𝑚) ≤ (#‘𝑧) ∧ 𝜑) → (((𝑘 + 𝑚) − (#‘𝑧)) ∈ (0...(#‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (#‘𝑧))))))))
135134impcom 446 . . . 4 ((𝑘 ∈ (0...(#‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘)) → ((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → ((¬ (𝑘 + 𝑚) ≤ (#‘𝑧) ∧ 𝜑) → (((𝑘 + 𝑚) − (#‘𝑧)) ∈ (0...(#‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (#‘𝑧)))))))
136135impcom 446 . . 3 (((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...(#‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) → ((¬ (𝑘 + 𝑚) ≤ (#‘𝑧) ∧ 𝜑) → (((𝑘 + 𝑚) − (#‘𝑧)) ∈ (0...(#‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (#‘𝑧))))))
137 oveq2 6658 . . . . 5 (𝑛 = ((𝑘 + 𝑚) − (#‘𝑧)) → (𝑧 cyclShift 𝑛) = (𝑧 cyclShift ((𝑘 + 𝑚) − (#‘𝑧))))
138137eqeq2d 2632 . . . 4 (𝑛 = ((𝑘 + 𝑚) − (#‘𝑧)) → (𝑥 = (𝑧 cyclShift 𝑛) ↔ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (#‘𝑧)))))
139138rspcev 3309 . . 3 ((((𝑘 + 𝑚) − (#‘𝑧)) ∈ (0...(#‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (#‘𝑧)))) → ∃𝑛 ∈ (0...(#‘𝑧))𝑥 = (𝑧 cyclShift 𝑛))
140136, 139syl6com 37 . 2 ((¬ (𝑘 + 𝑚) ≤ (#‘𝑧) ∧ 𝜑) → (((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...(#‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) → ∃𝑛 ∈ (0...(#‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))
14141, 140pm2.61ian 831 1 (𝜑 → (((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...(#‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) → ∃𝑛 ∈ (0...(#‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wrex 2913   class class class wbr 4653  cfv 5888  (class class class)co 6650  cr 9935  0cc0 9936   + caddc 9939   < clt 10074  cle 10075  cmin 10266  cn 11020  0cn0 11292  cz 11377  ...cfz 12326  #chash 13117  Word cword 13291   cyclShift ccsh 13534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-hash 13118  df-word 13299  df-concat 13301  df-substr 13303  df-csh 13535
This theorem is referenced by:  erclwwlkstr  26936  erclwwlksntr  26948
  Copyright terms: Public domain W3C validator