Proof of Theorem 3wlkdlem5
| Step | Hyp | Ref
| Expression |
| 1 | | 3wlkd.n |
. . . 4
⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) |
| 2 | | simpl 473 |
. . . . 5
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) → 𝐴 ≠ 𝐵) |
| 3 | | simpl 473 |
. . . . 5
⊢ ((𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) → 𝐵 ≠ 𝐶) |
| 4 | | id 22 |
. . . . 5
⊢ (𝐶 ≠ 𝐷 → 𝐶 ≠ 𝐷) |
| 5 | 2, 3, 4 | 3anim123i 1247 |
. . . 4
⊢ (((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷) → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝐷)) |
| 6 | 1, 5 | syl 17 |
. . 3
⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝐷)) |
| 7 | | 3wlkd.p |
. . . . 5
⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 |
| 8 | | 3wlkd.f |
. . . . 5
⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 |
| 9 | | 3wlkd.s |
. . . . 5
⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) |
| 10 | 7, 8, 9 | 3wlkdlem3 27021 |
. . . 4
⊢ (𝜑 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷))) |
| 11 | | simpl 473 |
. . . . . . 7
⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → (𝑃‘0) = 𝐴) |
| 12 | | simpr 477 |
. . . . . . 7
⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → (𝑃‘1) = 𝐵) |
| 13 | 11, 12 | neeq12d 2855 |
. . . . . 6
⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → ((𝑃‘0) ≠ (𝑃‘1) ↔ 𝐴 ≠ 𝐵)) |
| 14 | 13 | adantr 481 |
. . . . 5
⊢ ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝑃‘0) ≠ (𝑃‘1) ↔ 𝐴 ≠ 𝐵)) |
| 15 | 12 | adantr 481 |
. . . . . 6
⊢ ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (𝑃‘1) = 𝐵) |
| 16 | | simpl 473 |
. . . . . . 7
⊢ (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → (𝑃‘2) = 𝐶) |
| 17 | 16 | adantl 482 |
. . . . . 6
⊢ ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (𝑃‘2) = 𝐶) |
| 18 | 15, 17 | neeq12d 2855 |
. . . . 5
⊢ ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝑃‘1) ≠ (𝑃‘2) ↔ 𝐵 ≠ 𝐶)) |
| 19 | | simpr 477 |
. . . . . . 7
⊢ (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → (𝑃‘3) = 𝐷) |
| 20 | 16, 19 | neeq12d 2855 |
. . . . . 6
⊢ (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → ((𝑃‘2) ≠ (𝑃‘3) ↔ 𝐶 ≠ 𝐷)) |
| 21 | 20 | adantl 482 |
. . . . 5
⊢ ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝑃‘2) ≠ (𝑃‘3) ↔ 𝐶 ≠ 𝐷)) |
| 22 | 14, 18, 21 | 3anbi123d 1399 |
. . . 4
⊢ ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2) ∧ (𝑃‘2) ≠ (𝑃‘3)) ↔ (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝐷))) |
| 23 | 10, 22 | syl 17 |
. . 3
⊢ (𝜑 → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2) ∧ (𝑃‘2) ≠ (𝑃‘3)) ↔ (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝐷))) |
| 24 | 6, 23 | mpbird 247 |
. 2
⊢ (𝜑 → ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2) ∧ (𝑃‘2) ≠ (𝑃‘3))) |
| 25 | 7, 8 | 3wlkdlem2 27020 |
. . . 4
⊢
(0..^(#‘𝐹)) =
{0, 1, 2} |
| 26 | 25 | raleqi 3142 |
. . 3
⊢
(∀𝑘 ∈
(0..^(#‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)) ↔ ∀𝑘 ∈ {0, 1, 2} (𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1))) |
| 27 | | c0ex 10034 |
. . . 4
⊢ 0 ∈
V |
| 28 | | 1ex 10035 |
. . . 4
⊢ 1 ∈
V |
| 29 | | 2ex 11092 |
. . . 4
⊢ 2 ∈
V |
| 30 | | fveq2 6191 |
. . . . 5
⊢ (𝑘 = 0 → (𝑃‘𝑘) = (𝑃‘0)) |
| 31 | | oveq1 6657 |
. . . . . . 7
⊢ (𝑘 = 0 → (𝑘 + 1) = (0 + 1)) |
| 32 | | 0p1e1 11132 |
. . . . . . 7
⊢ (0 + 1) =
1 |
| 33 | 31, 32 | syl6eq 2672 |
. . . . . 6
⊢ (𝑘 = 0 → (𝑘 + 1) = 1) |
| 34 | 33 | fveq2d 6195 |
. . . . 5
⊢ (𝑘 = 0 → (𝑃‘(𝑘 + 1)) = (𝑃‘1)) |
| 35 | 30, 34 | neeq12d 2855 |
. . . 4
⊢ (𝑘 = 0 → ((𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)) ↔ (𝑃‘0) ≠ (𝑃‘1))) |
| 36 | | fveq2 6191 |
. . . . 5
⊢ (𝑘 = 1 → (𝑃‘𝑘) = (𝑃‘1)) |
| 37 | | oveq1 6657 |
. . . . . . 7
⊢ (𝑘 = 1 → (𝑘 + 1) = (1 + 1)) |
| 38 | | 1p1e2 11134 |
. . . . . . 7
⊢ (1 + 1) =
2 |
| 39 | 37, 38 | syl6eq 2672 |
. . . . . 6
⊢ (𝑘 = 1 → (𝑘 + 1) = 2) |
| 40 | 39 | fveq2d 6195 |
. . . . 5
⊢ (𝑘 = 1 → (𝑃‘(𝑘 + 1)) = (𝑃‘2)) |
| 41 | 36, 40 | neeq12d 2855 |
. . . 4
⊢ (𝑘 = 1 → ((𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)) ↔ (𝑃‘1) ≠ (𝑃‘2))) |
| 42 | | fveq2 6191 |
. . . . 5
⊢ (𝑘 = 2 → (𝑃‘𝑘) = (𝑃‘2)) |
| 43 | | oveq1 6657 |
. . . . . . 7
⊢ (𝑘 = 2 → (𝑘 + 1) = (2 + 1)) |
| 44 | | 2p1e3 11151 |
. . . . . . 7
⊢ (2 + 1) =
3 |
| 45 | 43, 44 | syl6eq 2672 |
. . . . . 6
⊢ (𝑘 = 2 → (𝑘 + 1) = 3) |
| 46 | 45 | fveq2d 6195 |
. . . . 5
⊢ (𝑘 = 2 → (𝑃‘(𝑘 + 1)) = (𝑃‘3)) |
| 47 | 42, 46 | neeq12d 2855 |
. . . 4
⊢ (𝑘 = 2 → ((𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)) ↔ (𝑃‘2) ≠ (𝑃‘3))) |
| 48 | 27, 28, 29, 35, 41, 47 | raltp 4240 |
. . 3
⊢
(∀𝑘 ∈
{0, 1, 2} (𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)) ↔ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2) ∧ (𝑃‘2) ≠ (𝑃‘3))) |
| 49 | 26, 48 | bitri 264 |
. 2
⊢
(∀𝑘 ∈
(0..^(#‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)) ↔ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2) ∧ (𝑃‘2) ≠ (𝑃‘3))) |
| 50 | 24, 49 | sylibr 224 |
1
⊢ (𝜑 → ∀𝑘 ∈ (0..^(#‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1))) |