MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3wlkdlem5 Structured version   Visualization version   Unicode version

Theorem 3wlkdlem5 27023
Description: Lemma 5 for 3wlkd 27030. (Contributed by Alexander van der Vekens, 11-Nov-2017.) (Revised by AV, 7-Feb-2021.)
Hypotheses
Ref Expression
3wlkd.p  |-  P  = 
<" A B C D ">
3wlkd.f  |-  F  = 
<" J K L ">
3wlkd.s  |-  ( ph  ->  ( ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
) )
3wlkd.n  |-  ( ph  ->  ( ( A  =/= 
B  /\  A  =/=  C )  /\  ( B  =/=  C  /\  B  =/=  D )  /\  C  =/=  D ) )
Assertion
Ref Expression
3wlkdlem5  |-  ( ph  ->  A. k  e.  ( 0..^ ( # `  F
) ) ( P `
 k )  =/=  ( P `  (
k  +  1 ) ) )
Distinct variable groups:    A, k    B, k    C, k    D, k   
k, J    k, K    k, L    k, V    k, F    P, k
Allowed substitution hint:    ph( k)

Proof of Theorem 3wlkdlem5
StepHypRef Expression
1 3wlkd.n . . . 4  |-  ( ph  ->  ( ( A  =/= 
B  /\  A  =/=  C )  /\  ( B  =/=  C  /\  B  =/=  D )  /\  C  =/=  D ) )
2 simpl 473 . . . . 5  |-  ( ( A  =/=  B  /\  A  =/=  C )  ->  A  =/=  B )
3 simpl 473 . . . . 5  |-  ( ( B  =/=  C  /\  B  =/=  D )  ->  B  =/=  C )
4 id 22 . . . . 5  |-  ( C  =/=  D  ->  C  =/=  D )
52, 3, 43anim123i 1247 . . . 4  |-  ( ( ( A  =/=  B  /\  A  =/=  C
)  /\  ( B  =/=  C  /\  B  =/= 
D )  /\  C  =/=  D )  ->  ( A  =/=  B  /\  B  =/=  C  /\  C  =/= 
D ) )
61, 5syl 17 . . 3  |-  ( ph  ->  ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  D
) )
7 3wlkd.p . . . . 5  |-  P  = 
<" A B C D ">
8 3wlkd.f . . . . 5  |-  F  = 
<" J K L ">
9 3wlkd.s . . . . 5  |-  ( ph  ->  ( ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
) )
107, 8, 93wlkdlem3 27021 . . . 4  |-  ( ph  ->  ( ( ( P `
 0 )  =  A  /\  ( P `
 1 )  =  B )  /\  (
( P `  2
)  =  C  /\  ( P `  3 )  =  D ) ) )
11 simpl 473 . . . . . . 7  |-  ( ( ( P `  0
)  =  A  /\  ( P `  1 )  =  B )  -> 
( P `  0
)  =  A )
12 simpr 477 . . . . . . 7  |-  ( ( ( P `  0
)  =  A  /\  ( P `  1 )  =  B )  -> 
( P `  1
)  =  B )
1311, 12neeq12d 2855 . . . . . 6  |-  ( ( ( P `  0
)  =  A  /\  ( P `  1 )  =  B )  -> 
( ( P ` 
0 )  =/=  ( P `  1 )  <->  A  =/=  B ) )
1413adantr 481 . . . . 5  |-  ( ( ( ( P ` 
0 )  =  A  /\  ( P ` 
1 )  =  B )  /\  ( ( P `  2 )  =  C  /\  ( P `  3 )  =  D ) )  -> 
( ( P ` 
0 )  =/=  ( P `  1 )  <->  A  =/=  B ) )
1512adantr 481 . . . . . 6  |-  ( ( ( ( P ` 
0 )  =  A  /\  ( P ` 
1 )  =  B )  /\  ( ( P `  2 )  =  C  /\  ( P `  3 )  =  D ) )  -> 
( P `  1
)  =  B )
16 simpl 473 . . . . . . 7  |-  ( ( ( P `  2
)  =  C  /\  ( P `  3 )  =  D )  -> 
( P `  2
)  =  C )
1716adantl 482 . . . . . 6  |-  ( ( ( ( P ` 
0 )  =  A  /\  ( P ` 
1 )  =  B )  /\  ( ( P `  2 )  =  C  /\  ( P `  3 )  =  D ) )  -> 
( P `  2
)  =  C )
1815, 17neeq12d 2855 . . . . 5  |-  ( ( ( ( P ` 
0 )  =  A  /\  ( P ` 
1 )  =  B )  /\  ( ( P `  2 )  =  C  /\  ( P `  3 )  =  D ) )  -> 
( ( P ` 
1 )  =/=  ( P `  2 )  <->  B  =/=  C ) )
19 simpr 477 . . . . . . 7  |-  ( ( ( P `  2
)  =  C  /\  ( P `  3 )  =  D )  -> 
( P `  3
)  =  D )
2016, 19neeq12d 2855 . . . . . 6  |-  ( ( ( P `  2
)  =  C  /\  ( P `  3 )  =  D )  -> 
( ( P ` 
2 )  =/=  ( P `  3 )  <->  C  =/=  D ) )
2120adantl 482 . . . . 5  |-  ( ( ( ( P ` 
0 )  =  A  /\  ( P ` 
1 )  =  B )  /\  ( ( P `  2 )  =  C  /\  ( P `  3 )  =  D ) )  -> 
( ( P ` 
2 )  =/=  ( P `  3 )  <->  C  =/=  D ) )
2214, 18, 213anbi123d 1399 . . . 4  |-  ( ( ( ( P ` 
0 )  =  A  /\  ( P ` 
1 )  =  B )  /\  ( ( P `  2 )  =  C  /\  ( P `  3 )  =  D ) )  -> 
( ( ( P `
 0 )  =/=  ( P `  1
)  /\  ( P `  1 )  =/=  ( P `  2
)  /\  ( P `  2 )  =/=  ( P `  3
) )  <->  ( A  =/=  B  /\  B  =/= 
C  /\  C  =/=  D ) ) )
2310, 22syl 17 . . 3  |-  ( ph  ->  ( ( ( P `
 0 )  =/=  ( P `  1
)  /\  ( P `  1 )  =/=  ( P `  2
)  /\  ( P `  2 )  =/=  ( P `  3
) )  <->  ( A  =/=  B  /\  B  =/= 
C  /\  C  =/=  D ) ) )
246, 23mpbird 247 . 2  |-  ( ph  ->  ( ( P ` 
0 )  =/=  ( P `  1 )  /\  ( P `  1
)  =/=  ( P `
 2 )  /\  ( P `  2 )  =/=  ( P ` 
3 ) ) )
257, 83wlkdlem2 27020 . . . 4  |-  ( 0..^ ( # `  F
) )  =  {
0 ,  1 ,  2 }
2625raleqi 3142 . . 3  |-  ( A. k  e.  ( 0..^ ( # `  F
) ) ( P `
 k )  =/=  ( P `  (
k  +  1 ) )  <->  A. k  e.  {
0 ,  1 ,  2 }  ( P `
 k )  =/=  ( P `  (
k  +  1 ) ) )
27 c0ex 10034 . . . 4  |-  0  e.  _V
28 1ex 10035 . . . 4  |-  1  e.  _V
29 2ex 11092 . . . 4  |-  2  e.  _V
30 fveq2 6191 . . . . 5  |-  ( k  =  0  ->  ( P `  k )  =  ( P ` 
0 ) )
31 oveq1 6657 . . . . . . 7  |-  ( k  =  0  ->  (
k  +  1 )  =  ( 0  +  1 ) )
32 0p1e1 11132 . . . . . . 7  |-  ( 0  +  1 )  =  1
3331, 32syl6eq 2672 . . . . . 6  |-  ( k  =  0  ->  (
k  +  1 )  =  1 )
3433fveq2d 6195 . . . . 5  |-  ( k  =  0  ->  ( P `  ( k  +  1 ) )  =  ( P ` 
1 ) )
3530, 34neeq12d 2855 . . . 4  |-  ( k  =  0  ->  (
( P `  k
)  =/=  ( P `
 ( k  +  1 ) )  <->  ( P `  0 )  =/=  ( P `  1
) ) )
36 fveq2 6191 . . . . 5  |-  ( k  =  1  ->  ( P `  k )  =  ( P ` 
1 ) )
37 oveq1 6657 . . . . . . 7  |-  ( k  =  1  ->  (
k  +  1 )  =  ( 1  +  1 ) )
38 1p1e2 11134 . . . . . . 7  |-  ( 1  +  1 )  =  2
3937, 38syl6eq 2672 . . . . . 6  |-  ( k  =  1  ->  (
k  +  1 )  =  2 )
4039fveq2d 6195 . . . . 5  |-  ( k  =  1  ->  ( P `  ( k  +  1 ) )  =  ( P ` 
2 ) )
4136, 40neeq12d 2855 . . . 4  |-  ( k  =  1  ->  (
( P `  k
)  =/=  ( P `
 ( k  +  1 ) )  <->  ( P `  1 )  =/=  ( P `  2
) ) )
42 fveq2 6191 . . . . 5  |-  ( k  =  2  ->  ( P `  k )  =  ( P ` 
2 ) )
43 oveq1 6657 . . . . . . 7  |-  ( k  =  2  ->  (
k  +  1 )  =  ( 2  +  1 ) )
44 2p1e3 11151 . . . . . . 7  |-  ( 2  +  1 )  =  3
4543, 44syl6eq 2672 . . . . . 6  |-  ( k  =  2  ->  (
k  +  1 )  =  3 )
4645fveq2d 6195 . . . . 5  |-  ( k  =  2  ->  ( P `  ( k  +  1 ) )  =  ( P ` 
3 ) )
4742, 46neeq12d 2855 . . . 4  |-  ( k  =  2  ->  (
( P `  k
)  =/=  ( P `
 ( k  +  1 ) )  <->  ( P `  2 )  =/=  ( P `  3
) ) )
4827, 28, 29, 35, 41, 47raltp 4240 . . 3  |-  ( A. k  e.  { 0 ,  1 ,  2 }  ( P `  k )  =/=  ( P `  ( k  +  1 ) )  <-> 
( ( P ` 
0 )  =/=  ( P `  1 )  /\  ( P `  1
)  =/=  ( P `
 2 )  /\  ( P `  2 )  =/=  ( P ` 
3 ) ) )
4926, 48bitri 264 . 2  |-  ( A. k  e.  ( 0..^ ( # `  F
) ) ( P `
 k )  =/=  ( P `  (
k  +  1 ) )  <->  ( ( P `
 0 )  =/=  ( P `  1
)  /\  ( P `  1 )  =/=  ( P `  2
)  /\  ( P `  2 )  =/=  ( P `  3
) ) )
5024, 49sylibr 224 1  |-  ( ph  ->  A. k  e.  ( 0..^ ( # `  F
) ) ( P `
 k )  =/=  ( P `  (
k  +  1 ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   {ctp 4181   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939   2c2 11070   3c3 11071  ..^cfzo 12465   #chash 13117   <"cs3 13587   <"cs4 13588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-s4 13595
This theorem is referenced by:  3wlkd  27030
  Copyright terms: Public domain W3C validator