MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou3lem7 Structured version   Visualization version   GIF version

Theorem aaliou3lem7 24104
Description: Lemma for aaliou3 24106. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypotheses
Ref Expression
aaliou3lem.c 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎)))
aaliou3lem.d 𝐿 = Σ𝑏 ∈ ℕ (𝐹𝑏)
aaliou3lem.e 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹𝑏))
Assertion
Ref Expression
aaliou3lem7 (𝐴 ∈ ℕ → ((𝐻𝐴) ≠ 𝐿 ∧ (abs‘(𝐿 − (𝐻𝐴))) ≤ (2 · (2↑-(!‘(𝐴 + 1))))))
Distinct variable groups:   𝑎,𝑏,𝑐   𝐹,𝑏,𝑐   𝐿,𝑐   𝐴,𝑎,𝑏,𝑐
Allowed substitution hints:   𝐹(𝑎)   𝐻(𝑎,𝑏,𝑐)   𝐿(𝑎,𝑏)

Proof of Theorem aaliou3lem7
StepHypRef Expression
1 peano2nn 11032 . . 3 (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ)
2 eqid 2622 . . . 4 (𝑐 ∈ (ℤ‘(𝐴 + 1)) ↦ ((2↑-(!‘(𝐴 + 1))) · ((1 / 2)↑(𝑐 − (𝐴 + 1))))) = (𝑐 ∈ (ℤ‘(𝐴 + 1)) ↦ ((2↑-(!‘(𝐴 + 1))) · ((1 / 2)↑(𝑐 − (𝐴 + 1)))))
3 aaliou3lem.c . . . 4 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎)))
42, 3aaliou3lem3 24099 . . 3 ((𝐴 + 1) ∈ ℕ → (seq(𝐴 + 1)( + , 𝐹) ∈ dom ⇝ ∧ Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ≤ (2 · (2↑-(!‘(𝐴 + 1))))))
5 3simpc 1060 . . 3 ((seq(𝐴 + 1)( + , 𝐹) ∈ dom ⇝ ∧ Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ≤ (2 · (2↑-(!‘(𝐴 + 1))))) → (Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ≤ (2 · (2↑-(!‘(𝐴 + 1))))))
61, 4, 53syl 18 . 2 (𝐴 ∈ ℕ → (Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ≤ (2 · (2↑-(!‘(𝐴 + 1))))))
7 nncn 11028 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
8 ax-1cn 9994 . . . . . . . . . . . 12 1 ∈ ℂ
9 pncan 10287 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1) − 1) = 𝐴)
107, 8, 9sylancl 694 . . . . . . . . . . 11 (𝐴 ∈ ℕ → ((𝐴 + 1) − 1) = 𝐴)
1110oveq2d 6666 . . . . . . . . . 10 (𝐴 ∈ ℕ → (1...((𝐴 + 1) − 1)) = (1...𝐴))
1211sumeq1d 14431 . . . . . . . . 9 (𝐴 ∈ ℕ → Σ𝑏 ∈ (1...((𝐴 + 1) − 1))(𝐹𝑏) = Σ𝑏 ∈ (1...𝐴)(𝐹𝑏))
1312oveq1d 6665 . . . . . . . 8 (𝐴 ∈ ℕ → (Σ𝑏 ∈ (1...((𝐴 + 1) − 1))(𝐹𝑏) + Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏)) = (Σ𝑏 ∈ (1...𝐴)(𝐹𝑏) + Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏)))
14 nnuz 11723 . . . . . . . . 9 ℕ = (ℤ‘1)
15 eqid 2622 . . . . . . . . 9 (ℤ‘(𝐴 + 1)) = (ℤ‘(𝐴 + 1))
16 eqidd 2623 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ ℕ) → (𝐹𝑏) = (𝐹𝑏))
17 fveq2 6191 . . . . . . . . . . . . . 14 (𝑎 = 𝑏 → (!‘𝑎) = (!‘𝑏))
1817negeqd 10275 . . . . . . . . . . . . 13 (𝑎 = 𝑏 → -(!‘𝑎) = -(!‘𝑏))
1918oveq2d 6666 . . . . . . . . . . . 12 (𝑎 = 𝑏 → (2↑-(!‘𝑎)) = (2↑-(!‘𝑏)))
20 ovex 6678 . . . . . . . . . . . 12 (2↑-(!‘𝑏)) ∈ V
2119, 3, 20fvmpt 6282 . . . . . . . . . . 11 (𝑏 ∈ ℕ → (𝐹𝑏) = (2↑-(!‘𝑏)))
22 2rp 11837 . . . . . . . . . . . . 13 2 ∈ ℝ+
23 nnnn0 11299 . . . . . . . . . . . . . . . 16 (𝑏 ∈ ℕ → 𝑏 ∈ ℕ0)
24 faccl 13070 . . . . . . . . . . . . . . . 16 (𝑏 ∈ ℕ0 → (!‘𝑏) ∈ ℕ)
2523, 24syl 17 . . . . . . . . . . . . . . 15 (𝑏 ∈ ℕ → (!‘𝑏) ∈ ℕ)
2625nnzd 11481 . . . . . . . . . . . . . 14 (𝑏 ∈ ℕ → (!‘𝑏) ∈ ℤ)
2726znegcld 11484 . . . . . . . . . . . . 13 (𝑏 ∈ ℕ → -(!‘𝑏) ∈ ℤ)
28 rpexpcl 12879 . . . . . . . . . . . . 13 ((2 ∈ ℝ+ ∧ -(!‘𝑏) ∈ ℤ) → (2↑-(!‘𝑏)) ∈ ℝ+)
2922, 27, 28sylancr 695 . . . . . . . . . . . 12 (𝑏 ∈ ℕ → (2↑-(!‘𝑏)) ∈ ℝ+)
3029rpcnd 11874 . . . . . . . . . . 11 (𝑏 ∈ ℕ → (2↑-(!‘𝑏)) ∈ ℂ)
3121, 30eqeltrd 2701 . . . . . . . . . 10 (𝑏 ∈ ℕ → (𝐹𝑏) ∈ ℂ)
3231adantl 482 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ ℕ) → (𝐹𝑏) ∈ ℂ)
33 1nn 11031 . . . . . . . . . 10 1 ∈ ℕ
34 eqid 2622 . . . . . . . . . . . 12 (𝑐 ∈ (ℤ‘1) ↦ ((2↑-(!‘1)) · ((1 / 2)↑(𝑐 − 1)))) = (𝑐 ∈ (ℤ‘1) ↦ ((2↑-(!‘1)) · ((1 / 2)↑(𝑐 − 1))))
3534, 3aaliou3lem3 24099 . . . . . . . . . . 11 (1 ∈ ℕ → (seq1( + , 𝐹) ∈ dom ⇝ ∧ Σ𝑏 ∈ (ℤ‘1)(𝐹𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ‘1)(𝐹𝑏) ≤ (2 · (2↑-(!‘1)))))
3635simp1d 1073 . . . . . . . . . 10 (1 ∈ ℕ → seq1( + , 𝐹) ∈ dom ⇝ )
3733, 36mp1i 13 . . . . . . . . 9 (𝐴 ∈ ℕ → seq1( + , 𝐹) ∈ dom ⇝ )
3814, 15, 1, 16, 32, 37isumsplit 14572 . . . . . . . 8 (𝐴 ∈ ℕ → Σ𝑏 ∈ ℕ (𝐹𝑏) = (Σ𝑏 ∈ (1...((𝐴 + 1) − 1))(𝐹𝑏) + Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏)))
39 oveq2 6658 . . . . . . . . . . 11 (𝑐 = 𝐴 → (1...𝑐) = (1...𝐴))
4039sumeq1d 14431 . . . . . . . . . 10 (𝑐 = 𝐴 → Σ𝑏 ∈ (1...𝑐)(𝐹𝑏) = Σ𝑏 ∈ (1...𝐴)(𝐹𝑏))
41 aaliou3lem.e . . . . . . . . . 10 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹𝑏))
42 sumex 14418 . . . . . . . . . 10 Σ𝑏 ∈ (1...𝐴)(𝐹𝑏) ∈ V
4340, 41, 42fvmpt 6282 . . . . . . . . 9 (𝐴 ∈ ℕ → (𝐻𝐴) = Σ𝑏 ∈ (1...𝐴)(𝐹𝑏))
4443oveq1d 6665 . . . . . . . 8 (𝐴 ∈ ℕ → ((𝐻𝐴) + Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏)) = (Σ𝑏 ∈ (1...𝐴)(𝐹𝑏) + Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏)))
4513, 38, 443eqtr4rd 2667 . . . . . . 7 (𝐴 ∈ ℕ → ((𝐻𝐴) + Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏)) = Σ𝑏 ∈ ℕ (𝐹𝑏))
46 aaliou3lem.d . . . . . . 7 𝐿 = Σ𝑏 ∈ ℕ (𝐹𝑏)
4745, 46syl6eqr 2674 . . . . . 6 (𝐴 ∈ ℕ → ((𝐻𝐴) + Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏)) = 𝐿)
483, 46, 41aaliou3lem4 24101 . . . . . . . . 9 𝐿 ∈ ℝ
4948recni 10052 . . . . . . . 8 𝐿 ∈ ℂ
5049a1i 11 . . . . . . 7 (𝐴 ∈ ℕ → 𝐿 ∈ ℂ)
513, 46, 41aaliou3lem5 24102 . . . . . . . 8 (𝐴 ∈ ℕ → (𝐻𝐴) ∈ ℝ)
5251recnd 10068 . . . . . . 7 (𝐴 ∈ ℕ → (𝐻𝐴) ∈ ℂ)
534simp2d 1074 . . . . . . . . 9 ((𝐴 + 1) ∈ ℕ → Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℝ+)
541, 53syl 17 . . . . . . . 8 (𝐴 ∈ ℕ → Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℝ+)
5554rpcnd 11874 . . . . . . 7 (𝐴 ∈ ℕ → Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℂ)
5650, 52, 55subaddd 10410 . . . . . 6 (𝐴 ∈ ℕ → ((𝐿 − (𝐻𝐴)) = Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ↔ ((𝐻𝐴) + Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏)) = 𝐿))
5747, 56mpbird 247 . . . . 5 (𝐴 ∈ ℕ → (𝐿 − (𝐻𝐴)) = Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏))
5857eqcomd 2628 . . . 4 (𝐴 ∈ ℕ → Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) = (𝐿 − (𝐻𝐴)))
59 eleq1 2689 . . . . 5 𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) = (𝐿 − (𝐻𝐴)) → (Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℝ+ ↔ (𝐿 − (𝐻𝐴)) ∈ ℝ+))
60 breq1 4656 . . . . 5 𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) = (𝐿 − (𝐻𝐴)) → (Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ≤ (2 · (2↑-(!‘(𝐴 + 1)))) ↔ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1))))))
6159, 60anbi12d 747 . . . 4 𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) = (𝐿 − (𝐻𝐴)) → ((Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ≤ (2 · (2↑-(!‘(𝐴 + 1))))) ↔ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))))
6258, 61syl 17 . . 3 (𝐴 ∈ ℕ → ((Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ≤ (2 · (2↑-(!‘(𝐴 + 1))))) ↔ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))))
6351adantr 481 . . . . . 6 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → (𝐻𝐴) ∈ ℝ)
64 simprl 794 . . . . . . 7 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → (𝐿 − (𝐻𝐴)) ∈ ℝ+)
65 difrp 11868 . . . . . . . 8 (((𝐻𝐴) ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((𝐻𝐴) < 𝐿 ↔ (𝐿 − (𝐻𝐴)) ∈ ℝ+))
6663, 48, 65sylancl 694 . . . . . . 7 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → ((𝐻𝐴) < 𝐿 ↔ (𝐿 − (𝐻𝐴)) ∈ ℝ+))
6764, 66mpbird 247 . . . . . 6 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → (𝐻𝐴) < 𝐿)
6863, 67ltned 10173 . . . . 5 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → (𝐻𝐴) ≠ 𝐿)
69 nnnn0 11299 . . . . . . . . . . . . . . 15 ((𝐴 + 1) ∈ ℕ → (𝐴 + 1) ∈ ℕ0)
70 faccl 13070 . . . . . . . . . . . . . . 15 ((𝐴 + 1) ∈ ℕ0 → (!‘(𝐴 + 1)) ∈ ℕ)
711, 69, 703syl 18 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ → (!‘(𝐴 + 1)) ∈ ℕ)
7271nnzd 11481 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ → (!‘(𝐴 + 1)) ∈ ℤ)
7372znegcld 11484 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → -(!‘(𝐴 + 1)) ∈ ℤ)
74 rpexpcl 12879 . . . . . . . . . . . 12 ((2 ∈ ℝ+ ∧ -(!‘(𝐴 + 1)) ∈ ℤ) → (2↑-(!‘(𝐴 + 1))) ∈ ℝ+)
7522, 73, 74sylancr 695 . . . . . . . . . . 11 (𝐴 ∈ ℕ → (2↑-(!‘(𝐴 + 1))) ∈ ℝ+)
76 rpmulcl 11855 . . . . . . . . . . 11 ((2 ∈ ℝ+ ∧ (2↑-(!‘(𝐴 + 1))) ∈ ℝ+) → (2 · (2↑-(!‘(𝐴 + 1)))) ∈ ℝ+)
7722, 75, 76sylancr 695 . . . . . . . . . 10 (𝐴 ∈ ℕ → (2 · (2↑-(!‘(𝐴 + 1)))) ∈ ℝ+)
7877adantr 481 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → (2 · (2↑-(!‘(𝐴 + 1)))) ∈ ℝ+)
7978rpred 11872 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → (2 · (2↑-(!‘(𝐴 + 1)))) ∈ ℝ)
8063, 79resubcld 10458 . . . . . . 7 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → ((𝐻𝐴) − (2 · (2↑-(!‘(𝐴 + 1))))) ∈ ℝ)
8148a1i 11 . . . . . . 7 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → 𝐿 ∈ ℝ)
8263, 78ltsubrpd 11904 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → ((𝐻𝐴) − (2 · (2↑-(!‘(𝐴 + 1))))) < (𝐻𝐴))
8380, 63, 81, 82, 67lttrd 10198 . . . . . . 7 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → ((𝐻𝐴) − (2 · (2↑-(!‘(𝐴 + 1))))) < 𝐿)
8480, 81, 83ltled 10185 . . . . . 6 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → ((𝐻𝐴) − (2 · (2↑-(!‘(𝐴 + 1))))) ≤ 𝐿)
85 simprr 796 . . . . . . 7 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))
8681, 63, 79lesubadd2d 10626 . . . . . . 7 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → ((𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))) ↔ 𝐿 ≤ ((𝐻𝐴) + (2 · (2↑-(!‘(𝐴 + 1)))))))
8785, 86mpbid 222 . . . . . 6 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → 𝐿 ≤ ((𝐻𝐴) + (2 · (2↑-(!‘(𝐴 + 1))))))
8881, 63, 79absdifled 14173 . . . . . 6 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → ((abs‘(𝐿 − (𝐻𝐴))) ≤ (2 · (2↑-(!‘(𝐴 + 1)))) ↔ (((𝐻𝐴) − (2 · (2↑-(!‘(𝐴 + 1))))) ≤ 𝐿𝐿 ≤ ((𝐻𝐴) + (2 · (2↑-(!‘(𝐴 + 1))))))))
8984, 87, 88mpbir2and 957 . . . . 5 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → (abs‘(𝐿 − (𝐻𝐴))) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))
9068, 89jca 554 . . . 4 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → ((𝐻𝐴) ≠ 𝐿 ∧ (abs‘(𝐿 − (𝐻𝐴))) ≤ (2 · (2↑-(!‘(𝐴 + 1))))))
9190ex 450 . . 3 (𝐴 ∈ ℕ → (((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1))))) → ((𝐻𝐴) ≠ 𝐿 ∧ (abs‘(𝐿 − (𝐻𝐴))) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))))
9262, 91sylbid 230 . 2 (𝐴 ∈ ℕ → ((Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ≤ (2 · (2↑-(!‘(𝐴 + 1))))) → ((𝐻𝐴) ≠ 𝐿 ∧ (abs‘(𝐿 − (𝐻𝐴))) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))))
936, 92mpd 15 1 (𝐴 ∈ ℕ → ((𝐻𝐴) ≠ 𝐿 ∧ (abs‘(𝐿 − (𝐻𝐴))) ≤ (2 · (2↑-(!‘(𝐴 + 1))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794   class class class wbr 4653  cmpt 4729  dom cdm 5114  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266  -cneg 10267   / cdiv 10684  cn 11020  2c2 11070  0cn0 11292  cz 11377  cuz 11687  +crp 11832  ...cfz 12326  seqcseq 12801  cexp 12860  !cfa 13060  abscabs 13974  cli 14215  Σcsu 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ioc 12180  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-fac 13061  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417
This theorem is referenced by:  aaliou3lem9  24105
  Copyright terms: Public domain W3C validator