| Step | Hyp | Ref
| Expression |
| 1 | | abelth.1 |
. . . . . . 7
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
| 2 | | abelth.2 |
. . . . . . 7
⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝
) |
| 3 | | abelth.3 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 4 | | abelth.4 |
. . . . . . 7
⊢ (𝜑 → 0 ≤ 𝑀) |
| 5 | | abelth.5 |
. . . . . . 7
⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 −
𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} |
| 6 | 1, 2, 3, 4, 5 | abelthlem2 24186 |
. . . . . 6
⊢ (𝜑 → (1 ∈ 𝑆 ∧ (𝑆 ∖ {1}) ⊆ (0(ball‘(abs
∘ − ))1))) |
| 7 | 6 | simprd 479 |
. . . . 5
⊢ (𝜑 → (𝑆 ∖ {1}) ⊆ (0(ball‘(abs
∘ − ))1)) |
| 8 | | ssundif 4052 |
. . . . 5
⊢ (𝑆 ⊆ ({1} ∪
(0(ball‘(abs ∘ − ))1)) ↔ (𝑆 ∖ {1}) ⊆ (0(ball‘(abs
∘ − ))1)) |
| 9 | 7, 8 | sylibr 224 |
. . . 4
⊢ (𝜑 → 𝑆 ⊆ ({1} ∪ (0(ball‘(abs
∘ − ))1))) |
| 10 | 9 | sselda 3603 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ ({1} ∪ (0(ball‘(abs
∘ − ))1))) |
| 11 | | elun 3753 |
. . 3
⊢ (𝑋 ∈ ({1} ∪
(0(ball‘(abs ∘ − ))1)) ↔ (𝑋 ∈ {1} ∨ 𝑋 ∈ (0(ball‘(abs ∘ −
))1))) |
| 12 | 10, 11 | sylib 208 |
. 2
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → (𝑋 ∈ {1} ∨ 𝑋 ∈ (0(ball‘(abs ∘ −
))1))) |
| 13 | 1 | feqmptd 6249 |
. . . . . . 7
⊢ (𝜑 → 𝐴 = (𝑛 ∈ ℕ0 ↦ (𝐴‘𝑛))) |
| 14 | 1 | ffvelrnda 6359 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝐴‘𝑛) ∈ ℂ) |
| 15 | 14 | mulid1d 10057 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝐴‘𝑛) · 1) = (𝐴‘𝑛)) |
| 16 | 15 | mpteq2dva 4744 |
. . . . . . 7
⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · 1)) = (𝑛 ∈ ℕ0 ↦ (𝐴‘𝑛))) |
| 17 | 13, 16 | eqtr4d 2659 |
. . . . . 6
⊢ (𝜑 → 𝐴 = (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · 1))) |
| 18 | | elsni 4194 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ {1} → 𝑋 = 1) |
| 19 | 18 | oveq1d 6665 |
. . . . . . . . . 10
⊢ (𝑋 ∈ {1} → (𝑋↑𝑛) = (1↑𝑛)) |
| 20 | | nn0z 11400 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℤ) |
| 21 | | 1exp 12889 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℤ →
(1↑𝑛) =
1) |
| 22 | 20, 21 | syl 17 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ0
→ (1↑𝑛) =
1) |
| 23 | 19, 22 | sylan9eq 2676 |
. . . . . . . . 9
⊢ ((𝑋 ∈ {1} ∧ 𝑛 ∈ ℕ0)
→ (𝑋↑𝑛) = 1) |
| 24 | 23 | oveq2d 6666 |
. . . . . . . 8
⊢ ((𝑋 ∈ {1} ∧ 𝑛 ∈ ℕ0)
→ ((𝐴‘𝑛) · (𝑋↑𝑛)) = ((𝐴‘𝑛) · 1)) |
| 25 | 24 | mpteq2dva 4744 |
. . . . . . 7
⊢ (𝑋 ∈ {1} → (𝑛 ∈ ℕ0
↦ ((𝐴‘𝑛) · (𝑋↑𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · 1))) |
| 26 | 25 | eqcomd 2628 |
. . . . . 6
⊢ (𝑋 ∈ {1} → (𝑛 ∈ ℕ0
↦ ((𝐴‘𝑛) · 1)) = (𝑛 ∈ ℕ0
↦ ((𝐴‘𝑛) · (𝑋↑𝑛)))) |
| 27 | 17, 26 | sylan9eq 2676 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ {1}) → 𝐴 = (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑋↑𝑛)))) |
| 28 | 27 | seqeq3d 12809 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ {1}) → seq0( + , 𝐴) = seq0( + , (𝑛 ∈ ℕ0
↦ ((𝐴‘𝑛) · (𝑋↑𝑛))))) |
| 29 | 2 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ {1}) → seq0( + , 𝐴) ∈ dom ⇝
) |
| 30 | 28, 29 | eqeltrrd 2702 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ {1}) → seq0( + , (𝑛 ∈ ℕ0
↦ ((𝐴‘𝑛) · (𝑋↑𝑛)))) ∈ dom ⇝ ) |
| 31 | | cnxmet 22576 |
. . . . . . . 8
⊢ (abs
∘ − ) ∈ (∞Met‘ℂ) |
| 32 | | 0cn 10032 |
. . . . . . . 8
⊢ 0 ∈
ℂ |
| 33 | | 1re 10039 |
. . . . . . . . 9
⊢ 1 ∈
ℝ |
| 34 | 33 | rexri 10097 |
. . . . . . . 8
⊢ 1 ∈
ℝ* |
| 35 | | blssm 22223 |
. . . . . . . 8
⊢ (((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ
∧ 1 ∈ ℝ*) → (0(ball‘(abs ∘ −
))1) ⊆ ℂ) |
| 36 | 31, 32, 34, 35 | mp3an 1424 |
. . . . . . 7
⊢
(0(ball‘(abs ∘ − ))1) ⊆ ℂ |
| 37 | | simpr 477 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) → 𝑋 ∈
(0(ball‘(abs ∘ − ))1)) |
| 38 | 36, 37 | sseldi 3601 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) → 𝑋 ∈
ℂ) |
| 39 | | oveq1 6657 |
. . . . . . . . 9
⊢ (𝑧 = 𝑋 → (𝑧↑𝑛) = (𝑋↑𝑛)) |
| 40 | 39 | oveq2d 6666 |
. . . . . . . 8
⊢ (𝑧 = 𝑋 → ((𝐴‘𝑛) · (𝑧↑𝑛)) = ((𝐴‘𝑛) · (𝑋↑𝑛))) |
| 41 | 40 | mpteq2dv 4745 |
. . . . . . 7
⊢ (𝑧 = 𝑋 → (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑋↑𝑛)))) |
| 42 | | eqid 2622 |
. . . . . . 7
⊢ (𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0
↦ ((𝐴‘𝑛) · (𝑧↑𝑛)))) = (𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛)))) |
| 43 | | nn0ex 11298 |
. . . . . . . 8
⊢
ℕ0 ∈ V |
| 44 | 43 | mptex 6486 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ0
↦ ((𝐴‘𝑛) · (𝑋↑𝑛))) ∈ V |
| 45 | 41, 42, 44 | fvmpt 6282 |
. . . . . 6
⊢ (𝑋 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0
↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘𝑋) = (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑋↑𝑛)))) |
| 46 | 38, 45 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) → ((𝑧 ∈
ℂ ↦ (𝑛 ∈
ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘𝑋) = (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑋↑𝑛)))) |
| 47 | 46 | seqeq3d 12809 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) → seq0( + , ((𝑧
∈ ℂ ↦ (𝑛
∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘𝑋)) = seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑋↑𝑛))))) |
| 48 | 1 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) → 𝐴:ℕ0⟶ℂ) |
| 49 | | eqid 2622 |
. . . . 5
⊢
sup({𝑟 ∈
ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*,
< ) = sup({𝑟 ∈
ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*,
< ) |
| 50 | 38 | abscld 14175 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) → (abs‘𝑋)
∈ ℝ) |
| 51 | 50 | rexrd 10089 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) → (abs‘𝑋)
∈ ℝ*) |
| 52 | | rexr 10085 |
. . . . . . 7
⊢ (1 ∈
ℝ → 1 ∈ ℝ*) |
| 53 | 33, 52 | mp1i 13 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) → 1 ∈ ℝ*) |
| 54 | | iccssxr 12256 |
. . . . . . 7
⊢
(0[,]+∞) ⊆ ℝ* |
| 55 | 42, 48, 49 | radcnvcl 24171 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) → sup({𝑟 ∈
ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*,
< ) ∈ (0[,]+∞)) |
| 56 | 54, 55 | sseldi 3601 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) → sup({𝑟 ∈
ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*,
< ) ∈ ℝ*) |
| 57 | | eqid 2622 |
. . . . . . . . . 10
⊢ (abs
∘ − ) = (abs ∘ − ) |
| 58 | 57 | cnmetdval 22574 |
. . . . . . . . 9
⊢ ((𝑋 ∈ ℂ ∧ 0 ∈
ℂ) → (𝑋(abs
∘ − )0) = (abs‘(𝑋 − 0))) |
| 59 | 38, 32, 58 | sylancl 694 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) → (𝑋(abs ∘
− )0) = (abs‘(𝑋
− 0))) |
| 60 | 38 | subid1d 10381 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) → (𝑋 − 0)
= 𝑋) |
| 61 | 60 | fveq2d 6195 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) → (abs‘(𝑋
− 0)) = (abs‘𝑋)) |
| 62 | 59, 61 | eqtrd 2656 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) → (𝑋(abs ∘
− )0) = (abs‘𝑋)) |
| 63 | | elbl3 22197 |
. . . . . . . . . 10
⊢ ((((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈
ℝ*) ∧ (0 ∈ ℂ ∧ 𝑋 ∈ ℂ)) → (𝑋 ∈ (0(ball‘(abs ∘ −
))1) ↔ (𝑋(abs ∘
− )0) < 1)) |
| 64 | 31, 34, 63 | mpanl12 718 |
. . . . . . . . 9
⊢ ((0
∈ ℂ ∧ 𝑋
∈ ℂ) → (𝑋
∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑋(abs ∘ − )0) <
1)) |
| 65 | 32, 38, 64 | sylancr 695 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) → (𝑋 ∈
(0(ball‘(abs ∘ − ))1) ↔ (𝑋(abs ∘ − )0) <
1)) |
| 66 | 37, 65 | mpbid 222 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) → (𝑋(abs ∘
− )0) < 1) |
| 67 | 62, 66 | eqbrtrrd 4677 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) → (abs‘𝑋)
< 1) |
| 68 | 1, 2 | abelthlem1 24185 |
. . . . . . 7
⊢ (𝜑 → 1 ≤ sup({𝑟 ∈ ℝ ∣ seq0( +
, ((𝑧 ∈ ℂ
↦ (𝑛 ∈
ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*,
< )) |
| 69 | 68 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) → 1 ≤ sup({𝑟
∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*,
< )) |
| 70 | 51, 53, 56, 67, 69 | xrltletrd 11992 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) → (abs‘𝑋)
< sup({𝑟 ∈ ℝ
∣ seq0( + , ((𝑧
∈ ℂ ↦ (𝑛
∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*,
< )) |
| 71 | 42, 48, 49, 38, 70 | radcnvlt2 24173 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) → seq0( + , ((𝑧
∈ ℂ ↦ (𝑛
∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘𝑋)) ∈ dom ⇝ ) |
| 72 | 47, 71 | eqeltrrd 2702 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) → seq0( + , (𝑛
∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑋↑𝑛)))) ∈ dom ⇝ ) |
| 73 | 30, 72 | jaodan 826 |
. 2
⊢ ((𝜑 ∧ (𝑋 ∈ {1} ∨ 𝑋 ∈ (0(ball‘(abs ∘ −
))1))) → seq0( + , (𝑛
∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑋↑𝑛)))) ∈ dom ⇝ ) |
| 74 | 12, 73 | syldan 487 |
1
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑋↑𝑛)))) ∈ dom ⇝ ) |