Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fprodexp Structured version   Visualization version   GIF version

Theorem fprodexp 39826
Description: Positive integer exponentiation of a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodexp.kph 𝑘𝜑
fprodexp.n (𝜑𝑁 ∈ ℕ0)
fprodexp.a (𝜑𝐴 ∈ Fin)
fprodexp.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
fprodexp (𝜑 → ∏𝑘𝐴 (𝐵𝑁) = (∏𝑘𝐴 𝐵𝑁))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem fprodexp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 14639 . . 3 (𝑥 = ∅ → ∏𝑘𝑥 (𝐵𝑁) = ∏𝑘 ∈ ∅ (𝐵𝑁))
2 prodeq1 14639 . . . 4 (𝑥 = ∅ → ∏𝑘𝑥 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
32oveq1d 6665 . . 3 (𝑥 = ∅ → (∏𝑘𝑥 𝐵𝑁) = (∏𝑘 ∈ ∅ 𝐵𝑁))
41, 3eqeq12d 2637 . 2 (𝑥 = ∅ → (∏𝑘𝑥 (𝐵𝑁) = (∏𝑘𝑥 𝐵𝑁) ↔ ∏𝑘 ∈ ∅ (𝐵𝑁) = (∏𝑘 ∈ ∅ 𝐵𝑁)))
5 prodeq1 14639 . . 3 (𝑥 = 𝑦 → ∏𝑘𝑥 (𝐵𝑁) = ∏𝑘𝑦 (𝐵𝑁))
6 prodeq1 14639 . . . 4 (𝑥 = 𝑦 → ∏𝑘𝑥 𝐵 = ∏𝑘𝑦 𝐵)
76oveq1d 6665 . . 3 (𝑥 = 𝑦 → (∏𝑘𝑥 𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁))
85, 7eqeq12d 2637 . 2 (𝑥 = 𝑦 → (∏𝑘𝑥 (𝐵𝑁) = (∏𝑘𝑥 𝐵𝑁) ↔ ∏𝑘𝑦 (𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁)))
9 prodeq1 14639 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → ∏𝑘𝑥 (𝐵𝑁) = ∏𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵𝑁))
10 prodeq1 14639 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → ∏𝑘𝑥 𝐵 = ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
1110oveq1d 6665 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → (∏𝑘𝑥 𝐵𝑁) = (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑁))
129, 11eqeq12d 2637 . 2 (𝑥 = (𝑦 ∪ {𝑧}) → (∏𝑘𝑥 (𝐵𝑁) = (∏𝑘𝑥 𝐵𝑁) ↔ ∏𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵𝑁) = (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑁)))
13 prodeq1 14639 . . 3 (𝑥 = 𝐴 → ∏𝑘𝑥 (𝐵𝑁) = ∏𝑘𝐴 (𝐵𝑁))
14 prodeq1 14639 . . . 4 (𝑥 = 𝐴 → ∏𝑘𝑥 𝐵 = ∏𝑘𝐴 𝐵)
1514oveq1d 6665 . . 3 (𝑥 = 𝐴 → (∏𝑘𝑥 𝐵𝑁) = (∏𝑘𝐴 𝐵𝑁))
1613, 15eqeq12d 2637 . 2 (𝑥 = 𝐴 → (∏𝑘𝑥 (𝐵𝑁) = (∏𝑘𝑥 𝐵𝑁) ↔ ∏𝑘𝐴 (𝐵𝑁) = (∏𝑘𝐴 𝐵𝑁)))
17 fprodexp.n . . . . . 6 (𝜑𝑁 ∈ ℕ0)
1817nn0zd 11480 . . . . 5 (𝜑𝑁 ∈ ℤ)
19 1exp 12889 . . . . 5 (𝑁 ∈ ℤ → (1↑𝑁) = 1)
2018, 19syl 17 . . . 4 (𝜑 → (1↑𝑁) = 1)
2120eqcomd 2628 . . 3 (𝜑 → 1 = (1↑𝑁))
22 prod0 14673 . . . 4 𝑘 ∈ ∅ (𝐵𝑁) = 1
2322a1i 11 . . 3 (𝜑 → ∏𝑘 ∈ ∅ (𝐵𝑁) = 1)
24 prod0 14673 . . . . 5 𝑘 ∈ ∅ 𝐵 = 1
2524oveq1i 6660 . . . 4 (∏𝑘 ∈ ∅ 𝐵𝑁) = (1↑𝑁)
2625a1i 11 . . 3 (𝜑 → (∏𝑘 ∈ ∅ 𝐵𝑁) = (1↑𝑁))
2721, 23, 263eqtr4d 2666 . 2 (𝜑 → ∏𝑘 ∈ ∅ (𝐵𝑁) = (∏𝑘 ∈ ∅ 𝐵𝑁))
28 fprodexp.kph . . . . . . . . 9 𝑘𝜑
29 nfv 1843 . . . . . . . . 9 𝑘(𝑦𝐴𝑧 ∈ (𝐴𝑦))
3028, 29nfan 1828 . . . . . . . 8 𝑘(𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦)))
31 fprodexp.a . . . . . . . . . . 11 (𝜑𝐴 ∈ Fin)
3231adantr 481 . . . . . . . . . 10 ((𝜑𝑦𝐴) → 𝐴 ∈ Fin)
33 simpr 477 . . . . . . . . . 10 ((𝜑𝑦𝐴) → 𝑦𝐴)
34 ssfi 8180 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ 𝑦𝐴) → 𝑦 ∈ Fin)
3532, 33, 34syl2anc 693 . . . . . . . . 9 ((𝜑𝑦𝐴) → 𝑦 ∈ Fin)
3635adantrr 753 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑦 ∈ Fin)
37 simpll 790 . . . . . . . . . 10 (((𝜑𝑦𝐴) ∧ 𝑘𝑦) → 𝜑)
3833sselda 3603 . . . . . . . . . 10 (((𝜑𝑦𝐴) ∧ 𝑘𝑦) → 𝑘𝐴)
39 fprodexp.b . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
4037, 38, 39syl2anc 693 . . . . . . . . 9 (((𝜑𝑦𝐴) ∧ 𝑘𝑦) → 𝐵 ∈ ℂ)
4140adantlrr 757 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 ∈ ℂ)
4230, 36, 41fprodclf 14723 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘𝑦 𝐵 ∈ ℂ)
43 simpl 473 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝜑)
44 simprr 796 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ (𝐴𝑦))
4544eldifad 3586 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧𝐴)
46 nfv 1843 . . . . . . . . . . 11 𝑘 𝑧𝐴
4728, 46nfan 1828 . . . . . . . . . 10 𝑘(𝜑𝑧𝐴)
48 nfcsb1v 3549 . . . . . . . . . . 11 𝑘𝑧 / 𝑘𝐵
4948nfel1 2779 . . . . . . . . . 10 𝑘𝑧 / 𝑘𝐵 ∈ ℂ
5047, 49nfim 1825 . . . . . . . . 9 𝑘((𝜑𝑧𝐴) → 𝑧 / 𝑘𝐵 ∈ ℂ)
51 eleq1 2689 . . . . . . . . . . 11 (𝑘 = 𝑧 → (𝑘𝐴𝑧𝐴))
5251anbi2d 740 . . . . . . . . . 10 (𝑘 = 𝑧 → ((𝜑𝑘𝐴) ↔ (𝜑𝑧𝐴)))
53 csbeq1a 3542 . . . . . . . . . . 11 (𝑘 = 𝑧𝐵 = 𝑧 / 𝑘𝐵)
5453eleq1d 2686 . . . . . . . . . 10 (𝑘 = 𝑧 → (𝐵 ∈ ℂ ↔ 𝑧 / 𝑘𝐵 ∈ ℂ))
5552, 54imbi12d 334 . . . . . . . . 9 (𝑘 = 𝑧 → (((𝜑𝑘𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑𝑧𝐴) → 𝑧 / 𝑘𝐵 ∈ ℂ)))
5650, 55, 39chvar 2262 . . . . . . . 8 ((𝜑𝑧𝐴) → 𝑧 / 𝑘𝐵 ∈ ℂ)
5743, 45, 56syl2anc 693 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵 ∈ ℂ)
5817adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑁 ∈ ℕ0)
59 mulexp 12899 . . . . . . 7 ((∏𝑘𝑦 𝐵 ∈ ℂ ∧ 𝑧 / 𝑘𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)↑𝑁) = ((∏𝑘𝑦 𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)))
6042, 57, 58, 59syl3anc 1326 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)↑𝑁) = ((∏𝑘𝑦 𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)))
6160eqcomd 2628 . . . . 5 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((∏𝑘𝑦 𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)) = ((∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)↑𝑁))
6261adantr 481 . . . 4 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁)) → ((∏𝑘𝑦 𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)) = ((∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)↑𝑁))
63 nfcv 2764 . . . . . . . 8 𝑘
64 nfcv 2764 . . . . . . . 8 𝑘𝑁
6548, 63, 64nfov 6676 . . . . . . 7 𝑘(𝑧 / 𝑘𝐵𝑁)
6644eldifbd 3587 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ¬ 𝑧𝑦)
6717ad2antrr 762 . . . . . . . . 9 (((𝜑𝑦𝐴) ∧ 𝑘𝑦) → 𝑁 ∈ ℕ0)
6840, 67expcld 13008 . . . . . . . 8 (((𝜑𝑦𝐴) ∧ 𝑘𝑦) → (𝐵𝑁) ∈ ℂ)
6968adantlrr 757 . . . . . . 7 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → (𝐵𝑁) ∈ ℂ)
7053oveq1d 6665 . . . . . . 7 (𝑘 = 𝑧 → (𝐵𝑁) = (𝑧 / 𝑘𝐵𝑁))
7157, 58expcld 13008 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑧 / 𝑘𝐵𝑁) ∈ ℂ)
7230, 65, 36, 44, 66, 69, 70, 71fprodsplitsn 14720 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵𝑁) = (∏𝑘𝑦 (𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)))
7372adantr 481 . . . . 5 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁)) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵𝑁) = (∏𝑘𝑦 (𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)))
74 oveq1 6657 . . . . . 6 (∏𝑘𝑦 (𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁) → (∏𝑘𝑦 (𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)) = ((∏𝑘𝑦 𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)))
7574adantl 482 . . . . 5 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁)) → (∏𝑘𝑦 (𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)) = ((∏𝑘𝑦 𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)))
7673, 75eqtrd 2656 . . . 4 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁)) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵𝑁) = ((∏𝑘𝑦 𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)))
7730, 48, 36, 44, 66, 41, 53, 57fprodsplitsn 14720 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵))
7877adantr 481 . . . . 5 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁)) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵))
7978oveq1d 6665 . . . 4 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁)) → (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑁) = ((∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)↑𝑁))
8062, 76, 793eqtr4d 2666 . . 3 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁)) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵𝑁) = (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑁))
8180ex 450 . 2 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (∏𝑘𝑦 (𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵𝑁) = (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑁)))
824, 8, 12, 16, 27, 81, 31findcard2d 8202 1 (𝜑 → ∏𝑘𝐴 (𝐵𝑁) = (∏𝑘𝐴 𝐵𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wnf 1708  wcel 1990  csb 3533  cdif 3571  cun 3572  wss 3574  c0 3915  {csn 4177  (class class class)co 6650  Fincfn 7955  cc 9934  1c1 9937   · cmul 9941  0cn0 11292  cz 11377  cexp 12860  cprod 14635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-prod 14636
This theorem is referenced by:  etransclem35  40486
  Copyright terms: Public domain W3C validator